Russian Chinese (Simplified) English German

Публикация научных работ

Publication of scientific papers foto Журнал «Проблемы современной науки и образования» выходит раз в две недели, по пятницам. Следующий номер журнала № 36(118), ноябрь 2017 г. Выйдет - 24.11.2017 г. Статьи принимаются до 22.11.2017 г.

Если Вы хотите напечататься в ближайшем номере, не откладывайте отправку заявки. Потратьте одну минуту, заполните и отправьте заявку в Редакцию.

linecolor




ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА МЕТОДОМ ДЕЛЕНИЯ

Ведерников С.И.

Email: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Ведерников Сергей Иванович – пенсионер,г. Москва

Аннотация: великая теорема Ферма доказана двадцать лет назад. Как показал С. Сингх [1], от Пифагора до П. Ферма, от П. Ферма до Э. Уайлса знаменитое уравнение развивало математику. Казалось бы, тема закрыта, но многим, не только математикам, не даёт покоя тот факт, что ещё в 1637 году Пьер Ферма заявил, что нашёл «удивительное» решение своей теоремы, несмотря на то, что математические знания того времени были далеки от знаний нашего времени. В предлагаемой работе на базе школьных знаний показана невозможность разложения  на целочисленные множители в уравнении при n > 2. Это значит, что теорема Ферма не имеет целочисленных решений.

Ключевые слова: великая, теорема, Ферма, метод деления.

THE PROOF OF FERMAT'S GREAT THEOREM BY THE METHOD OF DIVISION

Vedernikov S.I.

Vedernikov Sergey Ivanovich – Retired, Moscow

Abstract: Fermat's Great Theorem was proven twenty years ago. As shown by Singh [1], from Fermat to Wiles, this famous equation developed math. It would seem that the topic is closed, but many people, not just mathematicians, is haunted by the fact that in 1637 Pierre de Fermat stated that he found "amazing" solution to his theorem, despite the fact that the mathematical knowledge of that time were far from the knowledge of our time. In this paper, on the basis of school knowledge, shows the inability of the decomposition of  and  for integer multipliers in the equation  when n > 2. This means that Fermat's Great Theorem has no integer solutions.

Keywords: Fermat’s Great Theorem. Division method.

Список литературы / References

  1. Сингх C. Великая теорема Ферма. М.:МЦНМО, 2000. 286 с.
  2. Серпинский В. Пифагоровы треугольники. М.: Учпедгиз, 1959. 112 с.
  3. Гусев В.А., Мордкович А.Г. Математика: Учеб. Пособие. М. Высшая школа, 1984. 311 с.

Ссылка для цитирования данной статьи

Publication-of-scientific-papers-copyright     Тип лицензии на данную статью – CC BY 4.0. Это значит, что Вы можете свободно цитировать данную статью на любом носителе и в любом формате при указании авторства.

Ведерников С.И. Доказательство великой теоремы Ферма методом деления // Проблемы современной науки и образования  №34 (116), 2017. - С. {см. журнал}.

Publication of scientific papers 2

ОРТОГОНАЛЬНО-ПОТОКОВО-ОБМОТОЧНЫЙ ТРАНСФОРМАТОР И ЕГО ПРИМЕНЕНИЕ

Парамонов М.И.

Email: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Парамонов Михаил Игоревич– астрофизик, президент, европейский научно—исследовательский фонд «21-Век», г. София, Республика Болгария

Аннотация: автор предлагает новый вид параметрического трансформатора: ортогонально—потоково—обмоточный. Данный параметрический трансформатор имеет два независимых замкнутых магнитопровода с обмотками, расположенными перпендикулярно друг к другу, что исключает их взаимную индукцию. Управление вторичной обмоткой происходит исключительно изменением магнитной проницаемости части магнитопровода энергией первичной катушки. Причем, в трансформаторе отсутствуют встречные магнитные потоки, что исключает их взаимное влияние. Рассмотрен вариант его использования в качестве параметрического трансгенератора.

Ключевые слова: паратранс, ортогональный поток, ортогональные обмотки, параметрический резонанс

ORTHOGONAL-FLOW-WINDING TRANSFORMER AND ITS APPLICATION

Paramonov M.I.

Paramonov Mikhail Igorevich – astrophysicist, President, European research Foundation "21 Century", Sofia, Republic of Bulgaria

Abstract: the author proposes a new kind of parametric transformer: orthogonal — streaming — winding. The parametric transformer has two independent closed magnetic core with windings, arranged perpendicular to each other, which eliminates their mutual induction. The control secondary winding is solely a change in the magnetic permeability of a part of the magnetic energy of the primary coil. Moreover, in the transformer no counter magnetic fluxes, which eliminates their mutual influence. The variant of its use as a parametric transgeneration.

Keywords: parametric transformer, orthogonal to the flow orthogonal to the winding, parametric resonance

Список литературы / References

  1. Мандельштам Л.И., Папалекси Н.Д. О возбуждении колебаний в электрической колебательной системе при помощи периодического изменения емкости. Журн. техн. физики. 3. 1141-1144, 1933.
  2. Папалекси Н.Д. Параметрическое генерирование переменных токов, Журнал «Электричество». № 11, 1938.
  3. Задерей Г.П., Заика П.Р. Многофункциональные трансформаторы в средствах вторичного электропитания. М.: «Радио и связь», 1989
  4. Kusko А., Cain F. Ionized Magnetic Workshop // IEEE Trans on Magnetic. Vol. MAG-12. № 4. July, 1976.
  5. Парамонов М.И. О процессах в нелинейных реактивностях, провоцирующих возникновение и накопление энергии при параметрическом резонансе. European Science. № 1, 2014. изд. «Проблемы науки». Москва. ISSN2410-2865.
  6. Мандельштам Л.И., Папалекси Н.Д. О явлениях резонанса n-го рода. Журн. техн. физики. 2. 775—811, 1932.
  7. Мандельштам Л.И., Папалекси Н.Д. О параметрическом возбуждении электрических колебаний. Журн. техн. физики. 3. 5—29, 1934.

Ссылка для цитирования данной статьи

Publication-of-scientific-papers-copyright     Тип лицензии на данную статью – CC BY 4.0. Это значит, что Вы можете свободно цитировать данную статью на любом носителе и в любом формате при указании авторства.

Парамонов М.И. ОРТОГОНАЛЬНО-ПОТОКОВО-ОБМОТОЧНЫЙ ТРАНСФОРМАТОР И ЕГО ПРИМЕНЕНИЕ  // Проблемы современной науки и образования  №33 (115), 2017. - С. {см. журнал}.

Publication of scientific papers 2

ПРИРОДА СИЛ ГРАВИТАЦИИ, ИНЕРЦИИ, ДВИЖЕНИЯ ПЛАНЕТ

 

Ильченко Л.И.

Email: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Ильченко Леонид Иванович - кандидат технических наук, доцент, кафедра холодильной техники, кондиционирования и теплотехники, Федеральное государственное автономное образовательное учреждение высшего образования Дальневосточный государственный технический рыбохозяйственный университет г. Владивосток

Аннотация: анализируя движение планет и их спутников, сделан вывод о том, что все физические тела взаимодействуют с окружающей всепроникающей средой, название которой может быть различным (в том числе эфиром), вихрь скорости которой наряду с магнитным полем определяется вращением ядер центральных космических тел. Показано, что сила гравитации определяется не массой тел, а ускорением вихря среды и суммарной массой элементарных частиц взаимодействующего физического тела; сила же инерции проявляется благодаря взаимодействию при ускоренном или замедленном движении непосредственно самих тел относительно среды. Предлагается объяснение эллипсности орбит и наблюдаемому постоянному увеличению радиуса орбиты Луны. Обосновано предположение о необычном свойстве окружающей среды, близком к физическим свойствам твердого тела, объясняющее обратно квадратичную зависимость уменьшения гравитации и третий закон Кеплера. Показана возможность управления гравитацией в локальных масштабах, искусственно побуждая электромагнитным полем движение среды.

Ключевые слова: парадоксы закона всемирного тяготения, третий закон Кеплера, гравитация, эквивалентность масс, инерция, эллипсность орбит, ускорение свободного падения, эфирный вихрь.

NATURE OF THE GRAVITATION, INERTIA, MOTION PLANET

Ilchenko L.I.

Ilchenko Leonid Ivanovich – Candidate of Technical Sciences, Associate Professor, DEPARTMENT OF REFRIGERATION ENGINEERING, AIR CONDITIONING AND HEAT ENGINEERING FEDERAL STATE AUTONOMOUS EDUCATIONAL INSTITUTION OF HIGHER EDUCATION FAR-EASTERN STATE TECHNICAL FISHERIES UNIVERSITY, VLADIVOSTOK

Abstract: analyzing the motion of planets and their satellites, it is concluded that all physical bodies interact with the surrounded all-pervasive medium, whose name can be different (including ether), whose velocity vortex along with the magnetic field is determined by the rotation of the nuclei of the central cosmic bodies. It is shown that the force of gravity is determined not by the mass of the bodies, but by the acceleration of the vortex of the medium and by the total mass of the elementary particles of the interacting physical body; the force of inertia is manifested through interaction with the accelerated or slow motion of the bodies themselves relative to the medium. An explanation is proposed for the ellipse of the orbits and the observed constant increase in the radius of the moon’s orbit. The assumption of an unusual property of the environment, close to the physical properties of a solid, is explained, explaining the inverse quadratic dependence of the decrease in gravity and Kepler’s third law. The possibility of controlling gravity in local scales is shown, artificially inducing the motion of the electromagnetic field.

Keywords: paradoxes of the law of universal gravitation, the third law of Kepler, gravitation, equivalence of masses,  inertia, ellipse of orbits, acceleration of free fall, ether’s vortex null.

Список литературы / References

  1. Меньшиков В.А. Тайны тяготения / В.А. Меньшиков, В.К. Дедков. М.: НИИ КС, 2007. 332 с.
  2. Фейнман Р. Характер физических законов / Р.Фейнман. М.: Наука, 1987. 38 с.
  3. Гришаев А.А. Этот «цифровой» физический мир. [Электронный ресурс]. М., 2010. А.А. Гришаев. Режим доступа: http:// newfiz.narod.ru/ (дата обращения: 05.03.2017).
  4. Аллен К.У. Астрофизические величины. Справочник / К.У. Аллен. М.: «МИР», 1977. 273 с.
  5. Миткевич В.Ф. Основные воззрения современной физики / В.Ф. Миткевич // Сборник статей «Материализм и идеализм в физике ХХ века», составитель В.Н. Игнатович. Киев-М.: Изд-во ТОВ «А-Центр», 2008. 260 с.
  6. Майкельсон А.А. Oтносительное движение Земли и светоносный эфир / А.А. Майкельсон // Amer. J. Sci., 1887. Vol. 34. P.333-345. Пер. с англ. В сб. «Эфирный ветер» под ред. В.А. Ацюковского. Д.К. Миллер. Science, 1926, VL X № 1635 – там же.
  7. Ацюковский В.А. Эфирный ветер / В.А. Ацюковский. М.: Энергоатомиздат, 2011. 419 с.
  8. Ацюковский В.А. Общая эфиродинамика / В.А. Ацюковский. М.: Энергоатомиздат, 2003. 584 с.
  9. Grusenik М. Extended Michelson-Morli interferometer Experiment. [Электронный ресурс]. Режим доступа: http://blog<span< a="">>.hasslberger.com/2009/09/extended michelsonmorley inter.html#more/ (дата обращения: 05.03.2017).
  10. Орлов С.А. Теория вихревой гравитации и сотворение Вселенной. [Электронный ресурс] / С.А.Орлов Режим доступа: html SciTecLibrary.ru>Russian version>Rus /catalog>pages /7651/. (дата обращения 05.03.2017) (Наука и техника, 2005. № 4 [106] 29.03).
  11. Garcia R. Tracking solar gravity modes: the dinamics of the Solar core / Rafael A.Garcia, Sylvaine Turck-Chieze, Sabastian J.Jimenez-Reyes // Science. June, 2007. Vol. 316 (5831). P. 1591-1593 [DOI: 10.1126/science 1140598].
  12. Song X.D. Observational evidence for diffirential relation of the Earth’s inner core / X.D. Song, P.G. Richard // Nature,1996. Vol. 382, P. 221-229.
  13. Зельдович Я.Б. Гидромагнитное динамо как источник планетарного, солнечного и галактического магнетизма / Я.Б. Зельдович, А.А. Рузмайкин. УФН, 1987. Т. 152. Вып. 6. С. 263-284.
  14. Слезкин М.А. Динамика вязкой несжимаемой жидкости / М.А. Слезкин. М.: Гос. издательство технико-теоретической литературы, 1955. 521 с.
  15. .Мишин А.М. Начала высшей физики. Изд. 2-e дополн. / А.М. Мишин. М.: «Общественная польза», 2014. 306 с.
  16. Секлитова Л.А., Стрельникова Л.Л. Вселенная и ее миры. Т. 1. Ч. 2. Л.А. Секлитова, Л.Л. Стрельникова. М.: Амрита-Русь, 2013. 304 с.
  17. Астахов А.А. Инерция и силы инерции. [Электронный ресурс]. А.А. Астахов. Режим доступа: html: http:// alea.ucoz.ru/ (дата обращения: 06.02.2017).
  18. Фейнман Р. Фейнмановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс. М.: МИР, 1977. Т. 1 (2). 500 с.
  19. Брагинский В.Б. Проверка эквивалентности инертной и гравитационной масс / В.Б. Брагинский, В.И. Панов. М.: УФН, 1971. Т. 105. С. 779-780.
  20. Прандтль Л. Гидроаэромеханика / Л. Прандтль Ижевск. НИЦ «Регулярная и хаотическая динамика», 2000. 576 с.
  21. Ильченко Л.И. Специальная теория относительности, классическая механика и модель электрона .Л.И. Ильченко. Успехи современной науки, 2016. Т. 5. № 9. С. 107-112.
  22. Наливкин Д.В. Ураганы, бури и смерчи / Д.В. Наливкин. Ленинград; «Наука», 1969. 487 с.

Ссылка для цитирования данной статьи

Publication-of-scientific-papers-copyright     Тип лицензии на данную статью – CC BY 4.0. Это значит, что Вы можете свободно цитировать данную статью на любом носителе и в любом формате при указании авторства.

Ильченко Л.И. ПРИРОДА СИЛ ГРАВИТАЦИИ, ИНЕРЦИИ, ДВИЖЕНИЯ ПЛАНЕТ // Проблемы современной науки и образования  №31 (113), 2017. - С. {см. журнал}.

Publication of scientific papers 2

АЛЬТЕРНАТИВНЫЙ СПОСОБ ПОСТРОЕНИЯ ТРЕУГОЛЬНИКА ПАСКАЛЯ И РАСЧЁТА БИНОМИНАЛЬНЫХ КОЭФФИЦИЕНТОВ

Филатов О.В.

Email: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Филатов Олег Владимирович - инженер-программист, ЗАО «Научно технический центр «Модуль», г. Москва

Аннотация: существуют два способа построения треугольника Паскаля. В первом способе производится суммирование по закону Паскаля двух вышележащих величин, для получения его нового, упорядоченного, члена. Во втором способе построения треугольника Паскаля его члены рассчитывают по комбинаторной формуле сочетаний. Совпадение результатов, получаемых в обоих способах построения, принимают за равноправность этих способов построения треугольника Паскаля. В данной статье показано, как используя структуру треугольника Паскаля, можно получить множество новых формул и широко известную комбинаторную формулу перестановок, по которым строится этот треугольник. Некоторые приводимые новые формулы в значительной мере расширяют границу расчётов биноминальных коэффициентов на малоразрядных процессорах, за счёт того, что в них нет операции факториала (используемую в комбинаторной формуле сочетаний). В статье обращается внимание на ряд формальных признаков, проявляющихся при разных способах построения треугольника Паскаля, эти признаки позволяют ставить вопрос о том, что получаемые сущности - разные объекты, область совпадения которых называют треугольником Паскаля.

Ключевые слова: закон Паскаля, треугольник Паскаля, комбинаторный треугольник, прямоугольный треугольник Паскаля, равнобедренный треугольника Паскаля, биноминальный коэффициент.

AN ALTERNATIVE WAY TO BUILD A PASCAL TRIANGLE AND CALCULATE BINOMIAL COEFFICIENTS

Filatov O.V.

Filatov Oleg Vladimirovich - Software Engineer, SCIENTIFIC AND TECHNICAL CENTER «МОДУЛЬ», MOSCOW

Abstract: there are two ways to construct a Pascal triangle. In the first method, summation is carried out according to Pascal's law of two higher-lying quantities, in order to obtain its new, ordered, member. In the second method of constructing the Pascal triangle, its terms are calculated from the combinatorial combination formula. The coincidence of the results obtained in both methods of construction is taken as the equal rights of these methods of constructing the Pascal triangle. This article shows how using the structure of the Pascal triangle, one can get many new formulas, and the well-known combinatorial permutation formula on which this triangle is constructed. Some of the new formulas that are introduced greatly extend the boundary of the calculation of binomial coefficients on small-scale processors, because there is no factorial operation in them (used in the combinatorial combination formula). The article draws attention to a number of formal features that appear in different ways of constructing the Pascal triangle, these signs allow us to raise the question that the received entities are different objects whose domain of coincidence is called the Pascal triangle.

Keywords: Pascal's law, Pascal's triangle, combinatorial triangle, rectangular Pascal triangle, isosceles triangle of Рascal, binomial coefficient.

Список литературы

  1. Успенский В.А. «Популярные лекции по математике». Выпуск № 43. «Треугольник Паскаля» издание второе, дополненное. Москва «Наука», 1979 г. С. 17.
  2. Филатов О.В., Филатов И.О., Макеева Л.Л. и др. «Потоковая теория: из сайта в книгу». Москва, «Век информации», 2014. С. 200.
  3. Филатов О.В., Филатов И.О. «Закономерность в выпадении монет – закон потоковой последовательности». Германия, Издательский Дом: LAPLAMBERT Academic Publishing, 2015. С. 268.
  4. Филатов О.В. Статья «Бинарная потоковая последовательность – не Марковский процесс выпадения монеты. Бинарные слова и треугольник Паскаля». «Журнал научных публикаций аспирантов и докторантов». Стр. 166. № 11, 2014.
  5. Филатов О.В., Филатов И.О. Статья «О закономерностях структуры бинарной последовательности». «Журнал научных публикаций аспирантов и докторантов», 2014. № 5 (95). С. 226–233.
  6. Филатов О.В. Статья «Теорема «Об амплитудно-частотной характеристике идеальной бинарной случайной последовательности». «Проблемы современной науки и образования», 2015 г. № 1 (31). С. 5–11.
  7. Филатов О.В. Статья «Доказательство теоремы: «Формула для цуг из составных событий, образующих случайную бинарную последовательность». Журнал «Проблемы современной науки и образования / Problems of modern science and education», 2017. № 20 (102). С. 6-12.
  8. Филатов О.В. Статья «Derivation of formulas for Golomb postulates. A method for creating pseudo-random sequence of frequencies Mises. Basics "Combinatorics of long sequences." / Вывод формул для постулатов Голомба. Способ создания псевдослучайной последовательности из частот Мизеса. Основы «Комбинаторики длинных последовательностей». Журнал «Проблемы современной науки и образования / Problems of modern science and education». № 17 (59), 2016 г.
  9. Филатов О.В. Статья «Расчёт численностей поисковых шаблонов в парадоксе Пенни». «Проблемы современной науки и образования». № 11 (41), 2015 г.
  10. Филатов О.В. Статья «Определение случайной бинарной последовательности как комбинаторного объекта. Расчёт совпадающих фрагментов в случайных бинарных последовательностях». «Проблемы современной науки и образования / Problems of modern science and education». № 6 (48), 2016 г.

Ссылка для цитирования данной статьи

Publication-of-scientific-papers-copyright     Тип лицензии на данную статью – CC BY 4.0. Это значит, что Вы можете свободно цитировать данную статью на любом носителе и в любом формате при указании авторства.
Филатов О.В. АЛЬТЕРНАТИВНЫЙ СПОСОБ ПОСТРОЕНИЯ ТРЕУГОЛЬНИКА ПАСКАЛЯ И РАСЧЁТА БИНОМИНАЛЬНЫХ КОЭФФИЦИЕНТОВ // Проблемы современной науки и образования  №29 (111), 2017. - С. {см. журнал}.

Publication of scientific papers 2

Старый сайт

oldsite Старая версия сайта >>>

Рейтинг@Mail.ru
Яндекс.Метрика
Импакт-фактор российских научных журналов
 

Контакты

  • Адрес: 153008, Россия, г. Иваново, ул. Лежневская, д. 55, 4 этаж. Время работы: с 10-00 до 18-00. Кроме выходных.
  • Tel: +7(910)690-15-09
  • Fax: +7(910)690-15-09
  • Email: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
  • Website: http://www.ipi1.ru/
  • Вконтакте: http://vk.com/scienceproblems
Вы здесь: Главная Статьи 01.00.00 Физико-математические науки