Физико-математические науки
СОСТАВНЫЕ СОБЫТИЯ - ПОСЛЕДОВАТЕЛЬНОСТИ СЛУЧАЙНЫХ БИНАРНЫХ СОБЫТИЙ В I –МЕРНЫХ ПРОСТРАНСТВАХ, ИХ МОДЕЛИ И МАРКЕРЫ
- Категория: 01.00.00 Физико-математические науки
- Создано: 19.03.2021, 12:34
- Просмотров: 782
Филатов О.В.
Email: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
Филатов Олег Владимирович - инженер-программист,
ЗАО «Научно технический центр «Модуль», г. Москва
Аннотация: дальнейшее развитие «Комбинаторики длинных последовательностей» привело к изучению свойств стохастической случайности для монотонных серий в многомерных пространствах; оказалось, что основные формулы описывающие структуру одномерной случайной пос-ти являются частными решениями многомерной производящей функции; исследовано распределение серий случайных бинарных событий в окрестностях многомерных точек и дана формула, описывающая их распределение по пространственным осям; построены одномерные модели, в которых объединены серии бинарных событий из измерений многомерного пространства; предложено дробное описание физического трёхмерного пространства - времени, которое позволило применить формулы «Комбинаторики длинных последовательностей» в многомерных пространствах; полученные формулы разработаны на основе результатов компьютерных экспериментов и моделирования.
Ключевые слова: комбинаторика, «Комбинаторика длинных последовательностей», КДП, составные события, СС, эл, случайная бинарная последовательность, СБП, бинарные события, алгоритм.
COMPOSITE EVENTS - SEQUENCES OF RANDOM BINARY EVENTS IN I -DIMENSIONAL SPACES, THEIR MODELS AND MARKERS
Filatov O.V.
Filatov Oleg Vladimirovich - Software Engineer,
SCIENTIFIC AND TECHNICAL CENTER «МОДУЛЬ», MOSCOW
Abstract: further development of "Combinatorics of Long Sequences" led to the study of the properties of stochastic randomness for monotone series in multidimensional spaces; it turned out that the basic formulas describing the structure of a one-dimensional random post are particular solutions of a multidimensional generating function; the distribution of a series of random binary events in the vicinity of multidimensional points is investigated and a formula describing their distribution along the spatial axes is given; one-dimensional models have been built, in which a series of binary events from measurements of a multidimensional space are combined; a fractional description of the physical three-dimensional space-time is proposed, which made it possible to apply the formulas "Combinatorics of long sequences" in multidimensional spaces; the obtained formulas are developed on the basis of the results of computer experiments and modeling.
Keywords: combinatorics, "Combinatorics of long sequences", KDP, compound event, SS, el, random binary sequence, SBP, binary events, algorithm.
Список литературы / References
- Филатов О.В., Филатов И.О., Макеева Л.Л. и др. «Потоковая теория: из сайта в книгу», Москва, «Век информации», 2014, с. 200.
- Филатов О.В., Филатов И.О. «Закономерность в выпадении монет – закон потоковой последовательности». Германия, Издательский Дом: LAPLAMBERT Academic Publishing, 2015, с. 268.
- Филатов О.В., Филатов И.О., статья «О закономерностях структуры бинарной последовательности», «Журнал научных публикаций аспирантов и докторантов», 2014, №5 (95), с. 226–233.
- Филатов О.В., статья «Теорема «О амплитудно-частотной характеристике идеальной бинарной случайной последовательности», «Проблемы современной науки и образования», 2015 г., № 1 (31), с. 5–11, DOI: 20861/2304-2338-2014-31-001.
- Филатов О.В., статья «Описание схем управления вероятностью выпадения независимых составных событий», «Проблемы современной науки и образования», 2016 г., № 2 (44), с. 52 – 60, DOI: 10.20861/2304-2338-2016-44-001.
- Филатов О.В., статья «Применение геометрической вероятности для изменения вероятности нахождения серий случайных выпадений монеты», «Проблемы современной науки и образования», 2016 г., № 22 (64). с. 5-14, DOI: 10.20861/2304-2338-2016-64-001.
- Филатов О.В., статья «Частотные и вероятностные свойства случайных бинарных последовательностей. Бинарная геометрическая вероятность», «Проблемы современной науки и образования», №1(134), 2019 г., с.6-19, DOI: 10.20861/2304-2338-2019-134-004.
Ссылка для цитирования данной статьи
Тип лицензии на данную статью – CC BY 4.0. Это значит, что Вы можете свободно цитировать данную статью на любом носителе и в любом формате при указании авторства. | ||
Филатов О.В. СОСТАВНЫЕ СОБЫТИЯ - ПОСЛЕДОВАТЕЛЬНОСТИ СЛУЧАЙНЫХ БИНАРНЫХ СОБЫТИЙ В I –МЕРНЫХ ПРОСТРАНСТВАХ, ИХ МОДЕЛИ И МАРКЕРЫ // Проблемы современной науки и образования № 4 (161), 2021. - С. {см. журнал}. |
Поделитесь данной статьей, повысьте свой научный статус в социальных сетях
Tweet |