Russian Chinese (Simplified) English German

Публикация научных работ

publication foto Журнал «Проблемы современной науки и образования» выходит ежемесячно, 15 числа (уточняется в месяц выхода). Следующий номер журнала № 05(161), июнь 2021 г. Выйдет - 16.06.2021 г. Статьи принимаются до 16.06.2021 г.

Если Вы хотите напечататься в ближайшем номере, не откладывайте отправку заявки.

Потратьте одну минуту, заполните и отправьте заявку в Редакцию.




Физико-математические науки

ЧАСТОТЫ МИЗЕСА И ГЕОМЕТРИЧЕСКАЯ ВЕРОЯТНОСТЬ В V–ВЕРШИННЫХ ПОСЛЕДОВАТЕЛЬНОСТЯХ. НАЛИЧИЕ СТРУКТУРЫ У БИНАРНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ И ДЕМОНСТРАЦИЯ ОГРАНИЧЕНИЙ БАЗОВОГО ПОСТУЛАТА ТВ

Филатов О.В.

Email: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

Филатов Олег Владимирович - инженер-программист,

ЗАО «Научно технический центр «Модуль»,

г. Москва

Аннотация: развитие компьютерного моделирования позволяет говорить о появлении «Экспериментальной компьютерной математики», которая позволяет открывать законы природы при помощи постановки компьютерных экспериментов в той области науки, которая всегда считалась вотчиной чистого разума и логики, а именно в теории вероятности. В статье приводятся результаты многолетних компьютерных экспериментов, которые сильно расширяют научные знания в области теории вероятности за счёт открытия новых законов в случайных потоках. В статье, в виде компьютерной игры, описан эксперимент, демонстрирующий открытие нового базового закона в теории вероятности, а также приведены формулы, обобщающие до многомерного пространства, законы которым подчиняются подпоследовательности случайных событий, которые набирают из материнских последовательностей новым способом – «Геометрическим». Полученные результаты входят в новый вероятностный подраздел – «Комбинаторика Длинных Последовательностей» (КДП).

Ключевые слова: теория вероятности, комбинаторика длинных последовательностей, КДП, составное событие, СС, игра Пенни, Мизес.

MISES FREQUENCIES AND GEOMETRIC PROBABILITY IN V-VERTEX SEQUENCES. DEMONSTRATION OF THE LIMITATIONS OF THE BASIC TV POSTULATE DUE TO THE PRESENCE OF A STRUCTURE IN A BINARY SEQUENCE

Filatov O.V.

Filatov Oleg Vladimirovich - Software Engineer,

SCIENTIFIC AND TECHNICAL CENTER «МОДУЛЬ»,

MOSCOW

Abstract: the development of computer modeling allows us to talk about the emergence of "Experimental computer mathematics", which allows you to discover the laws of nature by setting up computer experiments in the field of science that has always been considered the domain of pure reason and logic, namely in the theory of probability. The article presents the results of many years of computer experiments that greatly expand scientific knowledge in the field of probability theory due to the discovery of new laws in random flows. In the article, in the form of a computer game, an experiment is described that demonstrates the discovery of a new basic law in the theory of probability, as well as formulas that generalize to a multidimensional space, the laws of which obey subsequences of random events, which are recruited from the parent sequences in a new way - "Geometric". The results obtained are included in a new probabilistic subsection - "Combinatorics of Long Sequences" (CDP).

Keywords: рrobability theory, combinatorics of long sequences, KDP, compound event, SS, Penny's game, Mises.

Список литературы / References

  • Филатов О.В., Филатов И.О., Макеева Л.Л. и др. Статья «Потоковая теория: из сайта в книгу», Москва, «Век информации», 2014. С. 200.
  • Филатов О.В., Филатов И.О. Статья «Закономерность в выпадении монет – закон потоковой последовательности». Германия, Издательский Дом: LAPLAMBERT Academic Publishing, 2015. С. 268.
  • Филатов О.В., Филатов И.О. Статья «О закономерностях структуры бинарной последовательности (продолжение)», «Журнал научных публикаций аспирантов и докторантов», 2014, №6 (96). С. 236–245.
  • Филатов О.В., Филатов И.О. Статья «О закономерностях структуры бинарной последовательности», «Журнал научных публикаций аспирантов и докторантов», 2014. №5 (95). С. 226–233.
  • Филатов О.В. Статья «Теорема «Об амплитудно-частотной характеристике идеальной бинарной случайной последовательности». «Проблемы современной науки и образования», 2015. № 1 (31). С. 5–11, DOI: 20861/2304-2338-2014-31-001.
  • Филатов О.В., Филатов И.О. «О закономерностях структуры бинарной последовательности (продолжение)». «Журнал научных публикаций аспирантов и докторантов», 2014. №7 (97). С. 98 – 108.
  • Филатов О.В. Статья «Вывод классической формулы выпадения сторон монеты из формул для пропорций составных событий потоковой последовательности», «Журнал научных публикаций аспирантов и докторантов», 2015. № 1 (103). С. 104–108.
  • Филатов О.В. Статья «Применение геометрической вероятности для изменения вероятности нахождения серий случайных выпадений монеты». «Проблемы современной науки и образования», № 22 (64), 2016. С. 5-14, DOI: 10.20861/2304-2338-2016-64-001.
  • Филатов О.В. Статья «Управляемая вероятность выпадения серий Пенни против классической вероятности выпадения серий равной длины. Не типичное преобразование Мизеса». «Проблемы современной науки и образования». № 29 (71), 2016. С. 6-18, DOI: 10.20861/2304-2338-2016-71-006.
  • Филатов О.В. Статья «Неприменимость закона геометрической вероятности к случайным бинарным последовательностям». «Проблемы современной науки и образования». № 7 (140), 2019. С. 5-14.
  • Филатов О.В. Статья «Частотные и вероятностные свойства случайных бинарных последовательностей. Бинарная геометрическая вероятность». «Проблемы современной науки и образования». № 1 (134), 2019. С. 6-19, DOI: 10.20861/2304-2338-2019-134-004.
  • Филатов О.В. Статья «Расчёт численностей поисковых шаблонов в парадоксе Пенни», «Проблемы современной науки и образования». № 11 (41), 2015. С. 40-50.
  • Филатов О.В. Статья «Описание распределения составных событий и их мизесовских частот через число возможных исходов. Механизм сжатия некоторых «не сжимаемых на один» последовательностей», «Проблемы современной науки и образования». № 9 (39), 2015. С. 27-36; DOI: 10.20861/2304-2338-2015-39-001.
  • Филатов О.В. Статья «Описание структур любых последовательностей образованных равновероятными случайными событиями». «Проблемы современной науки и образования». № 5 (138), 2019. С. 9-15; DOI: 10.24411/2304-2338-2019-10501.
  • Филатов О.В. Статья «Вывод формул для постулатов Голомба. Способ создания псевдослучайной последовательности из частот Мизеса. Основа «Комбинаторики длинных последовательностей»». «Проблемы современной науки и образования». № 17 (59), 2016. С. 11-18; DOI: 10.20861/2304-2338-2016-59-003.

Ссылка для цитирования данной статьи

Publication-of-scientific-papers-copyright     Тип лицензии на данную статью – CC BY 4.0. Это значит, что Вы можете свободно цитировать данную статью на любом носителе и в любом формате при указании авторства.

Филатов О.В. ЧАСТОТЫ МИЗЕСА И ГЕОМЕТРИЧЕСКАЯ ВЕРОЯТНОСТЬ В V–ВЕРШИННЫХ ПОСЛЕДОВАТЕЛЬНОСТЯХ. НАЛИЧИЕ СТРУКТУРЫ У БИНАРНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ И ДЕМОНСТРАЦИЯ ОГРАНИЧЕНИЙ БАЗОВОГО ПОСТУЛАТА ТВ // Проблемы современной науки и образования  № 1 (158), 2021. - С. {см. журнал}.

Publication of scientific papers 2

 

Поделитесь данной статьей, повысьте свой научный статус в социальных сетях

        
  
  

Старый сайт

oldsite Старая версия сайта >>>

Рейтинг@Mail.ru
Яндекс.Метрика
Импакт-фактор российских научных журналов
 

Контакты

  • Адрес: 153008, Россия, г. Иваново, ул. Лежневская, д. 55, 4 этаж. Время работы: с 10-00 до 18-00. Кроме выходных.
  • Tel: +7(910)690-15-09
  • Fax: +7(910)690-15-09
  • Email: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
  • Website: http://www.ipi1.ru/
  • Вконтакте: http://vk.com/scienceproblems
Вы здесь: Главная Статьи 01.00.00 Физико-математические науки ЧАСТОТЫ МИЗЕСА И ГЕОМЕТРИЧЕСКАЯ ВЕРОЯТНОСТЬ В V–ВЕРШИННЫХ ПОСЛЕДОВАТЕЛЬНОСТЯХ. НАЛИЧИЕ СТРУКТУРЫ У БИНАРНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ И ДЕМОНСТРАЦИЯ ОГРАНИЧЕНИЙ БАЗОВОГО ПОСТУЛАТА ТВ