Russian Chinese (Simplified) English German

Публикация научных работ

publication foto Журнал «Проблемы современной науки и образования» выходит ежемесячно, 15 числа (уточняется в месяц выхода). Следующий номер журнала № 10(155), октябрь 2020 г. Выйдет - 15.10.2020 г. Статьи принимаются до 10.10.2020 г.

Если Вы хотите напечататься в ближайшем номере, не откладывайте отправку заявки.

Потратьте одну минуту, заполните и отправьте заявку в Редакцию.




Физико-математические науки

ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ: «ФОРМУЛА ДЛЯ ЦУГ ИЗ СОСТАВНЫХ СОБЫТИЙ, ОБРАЗУЮЩИХ СЛУЧАЙНУЮ БИНАРНУЮ ПОСЛЕДОВАТЕЛЬНОСТЬ»

 Филатов О.В.

Email: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

Филатов Олег Владимирович - инженер-программист, ЗАО «Научно-технический центр «Модуль», г. Москва

Аннотация: хаос в случайной бинарной последовательности исчезает, если сгруппировать случайные события последовательности в логические сущности – составные события. Численность составных событий однозначно зависит от числа членов последовательности. В свою очередь, составные события образуют цуговые цепочки. Цуговые цепочки несут в себе основную структуру случайной бинарной последовательности. Цуги из составных событий образуют как случайные, так и псевдослучайные бинарные последовательности. Цуги служат основным инструментом в техниках (например, парадоксальная игра Пенни), изменяющих вероятность угадывания случайных бинарных событий, которые ранее считались эталоном независимости (например, выпадение сторон честной монеты). До сих пор формула расчёта численностей цуг применялась как эмпирическая, в статье даётся её вывод в виде математической теоремы, даны основные формулы для работы с цугами в случайных и псевдослучайных бинарных последовательностях.

Ключевые слова: элементарное событие, составное событие, цуга, бинарная последовательность, случайная бинарная последовательность.

PROOF OF THE THEOREM: "FORMULA FOR A TRAIN OF COMPOSITE EVENTS FORMING A RANDOM BINARY SEQUENCE"

Filatov O.V.

Filatov Oleg Vladimirovich - Experimental Physics, Software Engineer, SCIENTIFIC AND TECHNICAL CENTER «МОДУЛЬ», MOSCOW

Abstract: сhaos in a random binary sequence disappears if you group random events of a sequence into logical entities - compound events. The number of compound events depends uniquely on the number of terms in the sequence. In turn, composite events form a chain of chains. The circular chains carry the basic structure of a random binary sequence. Zugi  from compound events form both random and pseudorandom binary sequences. Zugi serve as the main tool in the techniques (for example, Penny's paradoxical game) that change the probability of guessing random binary events that were previously considered the standard of independence (for example, the fall of the sides of an honest coin). Until now, the formula for calculating the zug numbers has been used as an empirical formula, the paper gives its derivation as a mathematical theorem, gives the basic formulas for working with trains in random and pseudorandom binary sequences.

Keywords: elementary event, compound event, train, binary sequence, random binary sequence.

Список литературы / References

  1. Филатов О. В., Филатов И.О., Макеева Л.Л. и др. «Потоковая теория: из сайта в книгу». Москва, «Век информации», 2014. С. 200.
  2. Филатов О.В., Филатов И.О. «Закономерность в выпадении монет – закон потоковой последовательности». Германия, Издательский Дом: LAPLAMBERT Academic Publishing, 2015. С. 268. 
  3. Филатов О. В., Филатов И.О. Статья «О закономерностях структуры бинарной последовательности»,   «Журнал научных публикаций аспирантов и докторантов», 2014. №5 (95). С. 226 – 233.
  4. Филатов О.В., Филатов И.О. Статья «О закономерностях структуры бинарной последовательности (продолжение)». «Журнал научных публикаций аспирантов и докторантов», 2014. № 6 (96). С. 236-245. 
  5. Филатов О.В., Статья «Теорема «О амплитудно-частотной характеристике идеальной бинарной случайной последовательности». «Проблемы современной науки и образования», 2015 г. № 1 (31). С. 5–11.
  6. Филатов О.В. Статья «Количественный расчёт результатов парадоксальной игры Пенни (управляемая вероятность выпадений серий монеты) на ставках минимальной длины». «Проблемы современной науки и образования», 2017 г., № 17 (99). С. 6–19.
  7. Филатов О.В., Филатов И.О. Статья «О закономерностях структуры бинарной последовательности (продолжение 2)». Журнал научных публикаций аспирантов и докторантов. 2014. № 7 (97). С. 98-108.
  8. Филатов О.В. Статья «Derivation of formulas for Golomb postulates. A method for creating pseudo-random sequence of frequencies Mises. Basics "Combinatorics of long sequences." / Вывод формул для постулатов Голомба. Способ создания псевдослучайной последовательности из частот Мизеса. Основы «Комбинаторики длинных последовательностей». Журнал «Проблемы современной науки и образования / Problems of modern science and education». № 17 (59), 2016 г.
  9. Сайт со статьями Филатова О.В. [Электронный ресурс]. Режим доступа: http://kodpi.net/ (дата обращения: 26.05.2017).

Ссылка для цитирования данной статьи

Publication-of-scientific-papers-copyright    

Филатов О.В.  ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ: «ФОРМУЛА ДЛЯ ЦУГ ИЗ СОСТАВНЫХ СОБЫТИЙ, ОБРАЗУЮЩИХ СЛУЧАЙНУЮ БИНАРНУЮ ПОСЛЕДОВАТЕЛЬНОСТЬ» // Проблемы современной науки и образования  №20 (102), 2017. - С. {см. журнал}.

Publication of scientific papers 2

Поделитесь данной статьей, повысьте свой научный статус в социальных сетях

        
  
  

Старый сайт

oldsite Старая версия сайта >>>

Рейтинг@Mail.ru
Яндекс.Метрика
Импакт-фактор российских научных журналов
 

Контакты

  • Адрес: 153008, Россия, г. Иваново, ул. Лежневская, д. 55, 4 этаж. Время работы: с 10-00 до 18-00. Кроме выходных.
  • Tel: +7(910)690-15-09
  • Fax: +7(910)690-15-09
  • Email: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.
  • Website: http://www.ipi1.ru/
  • Вконтакте: http://vk.com/scienceproblems
Вы здесь: Главная Статьи 01.00.00 Физико-математические науки ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ: «ФОРМУЛА ДЛЯ ЦУГ ИЗ СОСТАВНЫХ СОБЫТИЙ, ОБРАЗУЮЩИХ СЛУЧАЙНУЮ БИНАРНУЮ ПОСЛЕДОВАТЕЛЬНОСТЬ»