Физико-математические науки
ЗАМКНУТОЕ МНОЖЕСТВО С ПУСТОЙ ВНУТРЕННОСТЬЮ (В ЧАСТНОСТИ КАНТОРОВО МНОЖЕСТВО) КАК СИНГУЛЯРНОЕ МНОЖЕСТВО ФУНКЦИИ / A CLOSED SET WITH EMPTY INTERIOR (IN PARTICULAR, CANTOR’S SET) AS A SINGULAR SET OF FUNCTIONS
- Категория: 01.00.00 Физико-математические науки
- Создано: 19.01.2017, 12:50
- Просмотров: 839
Сильченко Е. Б., Золотухина В. Г. ЗАМКНУТОЕ МНОЖЕСТВО С ПУСТОЙ ВНУТРЕННОСТЬЮ (В ЧАСТНОСТИ КАНТОРОВО МНОЖЕСТВО) КАК СИНГУЛЯРНОЕ МНОЖЕСТВО ФУНКЦИИ // Проблемы современной науки и образования № 2 (84), 2017. - С. {см. журнал}. Тип лицензии на данную статью – CC BY 3.0. Это значит, что Вы можете свободно цитировать данную статью на любом носителе и в любом формате при указании авторства.
Сильченко Евгений Борисович / Silchenko Evgeniy – аспирант;
Золотухина Вера Геннадьевна / Zolotukhina Vera – старший лаборант, кафедра теории функций, факультет математики и компьютерных наук, Федеральное государственное бюджетное образовательное учреждение высшего образования Кубанский государственный университет, г. Краснодар
Аннотация: в статье сообщается, что в метрическом пространстве для каждого не содержащего изолированных точек замкнутого множества с пустой внутренностью существует функция, для которой данное множество является сингулярным множеством (множество сингулярных точек функции называют сингулярным множеством; точка называется сингулярной для функции, если в любой окрестности этой точки функция является неограниченной); в качестве примера строится функция, для которой множеством сингулярных точек является канторово множество. Предъявляется доказательство, что эта функция – подходящая.
Abstract: in this article we report that in any metric space for any closed set with empty interior, which does not contain isolated points, there is a function for which the given set is the singular set (set of singular points is called the singular set; the point is called singular for the function, if in any neighbourhood of this point the function is unlimited); As the example we construct the function for which the set of singular points is the Cantor set. We present the proof that this function is suitable.
Ключевые слова: сингулярные точки, сингулярное множество функции, канторово множество.
Keywords: singular points, singular set functions, Cantor set.
Литература
- Сильченко Е. Б., Золотухина В. Г. Сингулярные множества функций // Проблемы современной науки и образования № 21 (63), 2016. С. 27-29. [Электронный ресурс]. Научная электронная библиотека. Режим доступа: http://elibrary.ru/item.asp?id=26477093/ (дата обращения: 13.01.2017).
Поделитесь данной статьей, повысьте свой научный статус в социальных сетях
Tweet |