Russian Chinese (Simplified) English German

Публикация научных работ

Тел.: +7(915)814-09-51(WhatsApp) E-mail: info@p8n.ru



Статьи наших авторов

МОДИФИЦИРОВАННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СХЕМЫ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ОПТИМИЗАЦИИ ОБРАБОТКИ ДАННЫХ

Джуманов О.И.

Email: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

Джуманов Олимжон Исраилович – кандидат технических наук, доцент, кафедра информационных технологий, Самаркандский государственный университет, г. Самарканд, Республика Узбекистан

Аннотация: в статье разработаны методы адаптивного обучения нейронных сетей (НС) на основе проектирования рациональной архитектуры сети, определения числа слоев, нейронов в слоях, весовых коэффициентов сети по древовидной модели в виде ориентированного графа, в котором узлы соответствуют нейронам, а ребра межнейронным связям. Проанализирована эффективность реализации обобщенного алгоритма идентификации случайных временных рядов на основе НС с учетом влияния алгоритмов отбора, формирования информативных наборов обучающих данных, модифицированного обучения сети с настройкой параметров его структурных компонентов. Реализован комплекс программных модулей идентификации для прогнозирования сложных случайных процессов. Доказана эффективность синтеза алгоритмов извлечения и использования знаний, свойств и особенностей нестационарных объектов, обобщения возможностей НС, настройки параметров структурных компонентов.

Ключевые слова: нестационарный объект, идентификация, обработка данных, случайный временный ряд, настройка параметров, нейронная сеть, обучение, многопараметрический случайный процесс.

MODIFIED CALCULATING SCHEMES OF NEURAL NETWORKS FOR OPTIMIZATION OF DATA PROCESSING

Djumanov O.I.

Djumanov Olimjon Israilovich – PhD in Technical science, Associate Professor, INFORMATION TECHNOLOGIES DEPARTMENT, SAMARKAND STATE UNIVERSUTY, SAMARKAND, REPUBLIC OF UZBEKISTAN

Abstract: methods of adaptive learning of neural networks (NN) based on the design of a rational network architecture, determination of the number of layers, neurons in layers, weight coefficients of a network based on a tree-like model in the form of an oriented graph in which the nodes correspond to neurons, and ribs to inter-neural connections are developed in the article. The efficiency of the implementation of generalized algorithm is analyzed during identification of random time series based on NN taking into account the influence of algorithms for selection, formation of informative sets of training data, modified training of the network with adjustment of structural components parameters. A complex of software with identification modules are realized to predict complex random processes. The efficiency of synthesizing of algorithms for extracting and using knowledge, properties and features of non-stationary objects, generalizing the capabilities of NN, adjusting of structural components parameters is proved.

Keywords: non-stationary object, identification, data processing, random time series, parameter adjustment, neural network, training, multiparameter random process.

Список литературы / References

  1. Финн В.К. Об интеллектуальном анализе данных // Новости Искусственного интеллекта, 2004. № 3. С. 3-18.
  2. Джуманов О.И., Холмонов С.М. Оптимизация обучения нейросетевой системы обработки информации при распознавании и прогнозировании нестационарных объектов// 4-th International Conference on Application of Information and Communication Technologies, Tashkent. 12-14 Оctober 2010. Section 5. IEEE. Tashkent, 2010. Р. 17-21.
  3. Djumanov O.I. Adaptive designing for neuronetworking system of processing the data with non-stationary nature // Peer-reviewed & Open access journal “ATI - Applied Technologies & Innovations”. Issue 1. April. 2011. Prague, 2011. Volume 4. Рp. 48-57. 

Ссылка для цитирования данной статьи

Publication-of-scientific-papers-copyright    

Джуманов О.И. МОДИФИЦИРОВАННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СХЕМЫ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ОПТИМИЗАЦИИ ОБРАБОТКИ ДАННЫХ // Проблемы современной науки и образования  №19 (101), 2017. - С. {см. журнал}.

Publication of scientific papers 2

СОСТОЯНИЕ ОТРАСЛИ ТЯЖЕЛОГО МАШИНОСТРОЕНИЯ В РОССИИ И ПЕРСПЕКТИВЫ ЕЁ РАЗВИТИЯ

Заболотный Е.А., Бакулина А.А.

Email: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

Заболотный Евгений Александрович - магистрант;

Бакулина Анна Александровна - кандидат экономических наук, доцент,

департамент корпоративных финансов и корпоративного управления,

Финансовый университет при Правительстве Российской Федерации,

г. Москва

Аннотация: в статье, на основе статистической информации, рассмотрены динамика и структура основных показателей, характеризующих отрасль машиностроения в Российской Федерации за период 2005 - 2015 гг. Проанализированы сложившиеся тенденции и закономерности, выявлены ключевые проблемы, связанные с производством машиностроительного оборудования, а также оценены перспективы дальнейшего развития отрасли в свете текущей политики импортозамещения. В заключении приводятся направления дальнейшего исследования и развития экономики отрасли машиностроения в Российской Федерации.

Ключевые слова: промышленность, машиностроение, динамика, структура, состояние, импортозамещение.

THE STATE OF THE HEAVY ENGINEERING INDUSTRY IN RUSSIA AND THE PROSPECTS FOR ITS DEVELOPMENT

Zabolotnyy E.A., Bakulina A.A.

Zabolotnyy Evgeniy Aleksandrovich – Undergraduate;

Bakulina Anna Aleksandrovna – PhD in Economics, Associate Professor,

DEPARTMENT OF CORPORATE FINANCE AND CORPORATE GOVERNANCE;

FINANCIAL UNIVERSITY UNDER THE GOVERNMENT OF THE RUSSIAN FEDERATION,

MOSCOW

Abstract: in the article, based on statistical information, the dynamics and structure of the main indicators characterizing the machine building industry in the Russian Federation for the period 2005-2015 are considered. Analyzed current trends and patterns, identified the key problems associated with the production of machine-building equipment, as well as assessed the prospects for further development of the industry in the light of the current policy of import substitution. In the conclusion directions of the further research and development of economy of branch of mechanical engineering in the Russian Federation are resulted.

Keywords: industry, mechanical engineering, dynamics, structure, state, import substitution.

Список литературы / References

  1. Абрамян С.И. Проблемы современного машиностроения России и подходы к их решению / С.И. Абрамян, А.А. Федотов // Управление экономическими системами: электронный научный журнал, 2015. № 8 (80). С. 3.
  2. Бодрунов С.Д. Россия: состояние и тенденции развития машиностроения / С.Д. Бодрунов // Научные труды Вольного экономического общества России, 2012. Т. 158. С. 99-105.
  3. Воронина В.М. Экономические показатели деятельности промышленного предприятия и пути их улучшения: прикладные аспекты / В.М. Воронина, О.В. Федорищева // В сборнике: Формирование рыночного хозяйства: теория и практика сборник научных статей. Оренбург, 2015. С. 39-44.
  4. Дубровина Н.А. Исследование динамики развития машиностроения России / Н.А. Дубровина // Вестник Университета (Государственный университет управления), 2014. № 12. С. 50-56.
  5. Коростелева Е.М. Текущее состояние и перспективы развития машиностроительной отрасли в России / Е. М. Коростелева // Молодой ученый, 2011. № 8. Т. 1. С. 140-144.
  6. Муханова И.В. Модернизация машиностроения России в условиях экономических санкций: проблемы и пути решения / И.В. Муханова // Экономический журнал, 2015. № 2. С. 34-41.
  7. Соловенко И.С. Фактор внешнеэкономической деятельности в развитии машиностроения России на современном этапе / И.С. Соловенко, А.Д. Кононыхина // Актуальные проблемы современного машиностроения. Юргинский технологический институт. Томск, 2015. С. 423-427.
  8. Тимофеев Д.Н. Изучение развития промышленности России в 1930–2011 годах с использованием статистических методов / Д.Н. Тимофеев, А.П. Цыпин // Экономическое возрождение России. № 1 (39), 2015. С. 54-59.
  9. Цыпин А.П. О статистических методах периодизации исторических временных рядов макроэкономических показателей / А.П. Цыпин // Вестник НГУЭУ. № 4, 2015. С. 88-10.

Ссылка для цитирования данной статьи

Publication-of-scientific-papers-copyright     Тип лицензии на данную статью – CC BY 4.0. Это значит, что Вы можете свободно цитировать данную статью на любом носителе и в любом формате при указании авторства.

Заболотный Е.А., Бакулина А.А. ОСТОЯНИЕ ОТРАСЛИ ТЯЖЕЛОГО МАШИНОСТРОЕНИЯ В РОССИИ И ПЕРСПЕКТИВЫ ЕЁ РАЗВИТИЯ // Проблемы современной науки и образования  №19 (101), 2017. - С. {см. журнал}.

Publication of scientific papers 2

ОПТИМИЗАЦИЯ ОБРАБОТКИ ДАННЫХ НЕСТАЦИОНАРНЫХ ОБЪЕКТОВ НА ОСНОВЕ СИНТЕЗА НЕЙРОННЫХ СЕТЕЙ И НЕЧЕТКИХ ГЕНЕТИЧЕСКИХ АЛГОРИТМОВ

Бекмуродов З.Т.

Email: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

Бекмуродов Зохид Толибович – ассистент, кафедра информационных технологий, Самаркандский государственный университет, г. Самарканд, Республика Узбекистан

Аннотация: в статье представлены результаты исследования и разработки методов и алгоритмов повышения качества идентификации и оптимизации обработки данных нестационарных объектов на основе разделения признакового пространства решения задач на параллельные сегменты с целью уменьшения времени поиска локальных экстремумов и регулирования значений параметров моделей на основе генетических алгоритмов. Предложен метод синтеза и обобщения возможностей алгоритмов сегментации, извлечения свойств данных, регулирования длины начальной и конечной популяции поколений, уровня расположения и ширины границ фильтрации нестационарных составляющих случайных временных рядов на основе нечетких правил. Спроектирован программный комплекс, ориентированный на использование встроенных сервисов, баз данных и знаний, традиционных и нечетких генетических алгоритмов.

Ключевые слова: нестационарный объект, генетический алгоритм, нечеткое множество, нечеткие выводы, идентификация, сегментация, настройка параметров, фильтрация, ширина границ, программный комплекc.

 OPTIMIZATION OF PROCESSING OF DATA OF NON-STATIONARY OBJECTS BASED ON SYNTHESIS OF NEURAL NETWORKS AND FUZZITIC GENETIC ALGORITHMS

Bekmurodov Z.T.

 Bekmurodov Zohid Tolibovich – assistant, INFORMATION TECHNOLOGIES DEPARTMENT, SAMARKAND STATE UNIVERSUTY, SAMARKAND, REPUBLIC OF UZBEKISTAN

Abstract: the article presents the results of research and development of methods and algorithms for improving the quality of identification and optimization of non-stationary objects data processing on the basis of separation of feature space for solving problems into parallel segments with the aim of reducing the time of searching for local extrema and adjusting the values of model parameters based on genetic algorithms. The proposed method synthesis and generalizes the capabilities of algorithms for segmentation, extracting data properties, regulating the length of initial and final population of generations, level of location and width of filtering boundaries for nonstationary components of random time series based on fuzzy rules. The software package oriented to use embedded services, databases and knowledge bases, traditional and fuzzy genetic algorithms is designed.

Keywords: non-stationary object, genetic algorithm, fuzzy set, fuzzy conclusions, identification, segmentation, parameter adjustment, filtering, width of borders, software.

Список литературы / References

  1. Ярушкина Н.Г. Основы теории нечетких и гибридных систем / Учебное пособие. М.: Финансы и статистика, 2004.
  2. Курейчик В.М. Генетические алгоритмы. // Учебник для вузов. Таганрог. Таганрог ТРТУ, 2002.
  3. Djumanov O.I., Kholmonov S.M. Methods and algorithms of selection the informative attributes in systems of adaptive data processing for analysis and forecasting // “Applied Technologies and Innovations” Prague, 2012. Volume 8. November 2012. Рp.45-55.

Ссылка для цитирования данной статьи

Publication-of-scientific-papers-copyright    
Бекмуродов З.Т. ОПТИМИЗАЦИЯ ОБРАБОТКИ ДАННЫХ НЕСТАЦИОНАРНЫХ ОБЪЕКТОВ НА ОСНОВЕ СИНТЕЗА НЕЙРОННЫХ СЕТЕЙ И НЕЧЕТКИХ ГЕНЕТИЧЕСКИХ АЛГОРИТМОВ // Проблемы современной науки и образования  №19 (101), 2017. - С. {см. журнал}.

Publication of scientific papers 2

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ МЕТОДОВ КОНТРОЛЯ ДОСТОВЕРНОСТИ ОБРАБОТКИ ЭЛЕКТРОННЫХ ДОКУМЕНТОВ НА ОСНОВЕ НЕЧЕТКОЙ ГИПЕРСЕТИ

Ахатов А.Р.

Email: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

Ахатов Акмал Рустамович – доктор технических наук, профессор, кафедра информационных технологий, Самаркандский государственный университет, г. Самарканд, Республика Узбекистан

Аннотация: в статье исследованы инструменты оптимизации достоверности передачи и обработки электронных документов (ЭД) для расширения состава известных технологий и применения в различных предметных областях. Разработана модель документооборота, ориентированная на применение UML-диаграмм связей ЭД, которая позволяет отражать связи между структурными компонентами организационно-распорядительных документов. Спроектирована семантическая гиперсеть для поиска признаков ЭД на основе синтеза моделей стохастического поиска, нечеткой логики, отражения функциональных связей переменных входов и выходов с помощью функции принадлежностей лингвистических термов. Доказано улучшение показателя достоверности информации при реализации разработанных методов по сравнению с существующими технологиями.  

Ключевые слова: электронный документ, достоверность, эталонная проверка, изображение, сигнальные характеристики, фрактальная обработка, лексикологический синтез, структура документа.

INCREASING OF EFFECTIVENESS OF METHODS TO CONTROL OF PROCESSED ELECTRONIC DOCUMENTS AUTHENTICITY ON THE BASIS OF FUZZY GYPHERNET

Akhatov A.R.

Akhatov Akmal Rustamovich – Dr. Sc. in Technics, Professor, INFORMATION TECHNOLOGIES DEPARTMENT, SAMARKAND STATE UNIVERSUTY, SAMARKAND, REPUBLIC OF UZBEKISTAN

Abstract: the article examines tools for optimizing the authenticity  of electronic documents (ED) during transmission and processing to expand the known technologies and applications in various subject areas. The workflow model, focused on the use of UML-diagrams of ED relations is developed for allowing reflect of links between the structural components of organizational and administrative documents. The semantic hypernetwork is designed for search ED features on the basis of synthesis of models of stochastic search, fuzzy logic, reflection functional relationships of inputs and outputs variables by functions of linguistic membership terms.  Improvement for authenticity of information by implementation of developed methods is  proved by comparing with existing technologies.

Keywords: electronic document, authenticity, reference check, image, signal characteristics, fractal processing, lexicological synthesis, document structure.

Список литературы / References

  1. Коновалов М.Г. Методы адаптивной обработки информации и их приложения. М.: ИПИ РАН, 2007. 212 с. 
  2. Джордж Ф.Л. Искусственный интеллект, стратегии и методы решения сложных проблем, Четвёртое издание. «Нью-Мексиковский университет». «Вильямс». М-СПБ-Киев, 2005 г. 863 с.
  3. Жуманов И.И., Ахатов А.Р. Нечеткая семантическая гиперсеть контроля достоверности информации в системах электронного документооборота // 4-th AICT. Section 2. IEEE. Tashkent, 2010. Р. 21-25. 

Ссылка для цитирования данной статьи

Publication-of-scientific-papers-copyright    

Ахатов А.Р.  ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ МЕТОДОВ КОНТРОЛЯ ДОСТОВЕРНОСТИ ОБРАБОТКИ ЭЛЕКТРОННЫХ ДОКУМЕНТОВ НА ОСНОВЕ НЕЧЕТКОЙ ГИПЕРСЕТИ // Проблемы современной науки и образования  №19 (101), 2017. - С. {см. журнал}.

Publication of scientific papers 2

ПРОБЛЕМЫ ЗАЩИТЫ ИНФОРМАЦИИ С УЧЕТОМ ЧЕЛОВЕЧЕСКОГО ФАКТОРА

Буркитбаев А.М., Абеуов Р.Р., Баширов А.В.

Email: Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.

Буркитбаев Абылай Муратович – магистрант;

Абеуов Роман Ринатович – магистрант;

Баширов Александр Витальевич – кандидат технических наук, ведущий научный сотрудник,

кафедра информационно-вычислительных систем,

Научно-исследовательский институт экономических и правовых исследований

Карагандинский экономический университет Казпотребсоюза,

г. Караганда, Республика Казахстан

Аннотация: обсуждаются аспекты: защита данных и информации, криптография и ее виды, а также методы атак на конфиденциальную информацию. Рассматриваются варианты атаки и защиты информации, в частности набирающий популярность метод социальной инженерии. Решаются часто встречаемые проблемы комплексной защиты информации. Обращается внимание на особенности человеческого фактора при защите данных. Авторы приходят к выводам о решении выбора комплекса защитных средств организации, составлении политики конфиденциальности на рабочем месте.

Ключевые слова: защита информации, криптозащита, методы взлома.

 PROBLEMS OF INFORMATION PROTECTION WITH THE ACCOUNT OF THE HUMAN FACTOR

Burkitbayev A.M., Abeuov R.R., Bashirov A.V.

Burkitbayev AbylayMuratovich – Graduate Student;

Abeuov Roman Rinatovich – Graduate Student;

Bashirov Alexander Vitalyevich – Candidate of Technical Sciences, Leading Researcher,

DEPARTMENT OF INFORMATION AND COMPUTING SYSTEMS,

KARAGANDA ECONOMIC UNIVERSITY OF KAZPOTREBSOUZ,

KARAGANDА, REPUBLIC OF KAZAKHSTAN

Abstract: discussing aspects: protection of data and information, cryptography and its types and methods of attacks on confidential information. Discussing options for attack and protection of information, in particular the increasingly popular method of social engineering. Resolving frequent problems of complex information security. Attention is drawn to the peculiarities of the human factor in data protection. The authors come to conclusions about the solution selection of the complex of protective equipment, organization, drafting privacy policies in the workplace.

Keywords: protection of information, crypto protection, methods of hacking.

Список литературы / References

  1. Top ten password cracking techniques. [Электронныйресурс]. Режим доступа: http://www.alphr.com/features/371158/top-ten-password-cracking-techniques/ (дата обращения: 24.04.2017).
  2. Баширов А.В., Ханов Т.А., Сыздык Б.К., Оразметов Н.С. Оценка риска информационной безопасности подразделения // Современные научные исследования и разработки,. 2016. № 6 (61). [Электронный ресурс]. Режим доступа: http://olimpiks.ru/zhurnal-sovremennyye-nauchnyye-issledovaniya-i-razrabotki/ (дата обращения: 23.04.2017).
  3. Предотвратить НЕЛЬЗЯ поймать! [Электронный ресурс]. Режим доступа: http://www.ntks-it.ru/products/perimetrix/article1/ (дата обращения: 25.04.2017).

Ссылка для цитирования данной статьи

Publication-of-scientific-papers-copyright    

Буркитбаев А.М., Абеуов Р.Р., Баширов А.В. ПРОБЛЕМЫ ЗАЩИТЫ ИНФОРМАЦИИ С УЧЕТОМ ЧЕЛОВЕЧЕСКОГО ФАКТОРА // Проблемы современной науки и образования  №19 (101), 2017. - С. {см. журнал}.

Publication of scientific papers 2

Старый сайт

oldsite Старая версия сайта >>>

Рейтинг@Mail.ru
Яндекс.Метрика
Импакт-фактор российских научных журналов
 

Контакты

  • Адрес: 153008, Россия, г. Иваново, ул. Лежневская, д. 55, 4 этаж. Время работы: с 10-00 до 18-00. Кроме выходных.
  • Tel: +7(915)814-09-51 (МТС)
  • Fax: +7(961)245-79-19(Билайн)
  • Email:
  • Website: http://www.ipi1.ru/
  • Вконтакте: http://vk.com/scienceproblems
Вы здесь: Главная Статьи