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Abstract: the article discusses a generalization of model of economic growth with constant pace, which takes 

into account the effects of dynamic memory. Memory means that endogenous or exogenous variable at a given 

time depends not only on their value at that time, but also on their values at previous times. To describe the 

dynamic memory we use derivatives of non-integer orders. We obtain the solutions of fractional differential 

equations with derivatives of non-integral order, which describe the dynamics of the output caused by the 

changes of the net investments and effects of power-law fading memory. 

Аннотация: в статье обсуждается обобщение модели экономического роста с постоянным темпом, 

учитывающее эффекты динамической памяти. Память означает, что эндогенная или экзогенная 

переменная в данный момент времени зависит не только от значения в этот момент времени, но и от 

значений в прошлом. Для описания динамической памяти мы используем производные нецелых порядков. 

Получены решения дифференциальных уравнений с производными нецелого порядка, описывающие 

динамику изменений объема выпускаемой продукции, обусловленную изменением чистых инвестиций и 

эффектами степенной затухающей памяти. 
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Introduction 

In the continuous time approach, the economic growth models are described by using the tool of differential 

equations with derivatives of integer orders [1, 2, 3]. In mathematics, derivatives of non-integer order are also 

well known [4, 5]. This tool allows us to describe processes with power-law memory (for example, see [6]). In 

this paper, we will consider a simplest economic model of growth with dynamic memory. We propose a 

generalization of economic growth model with constant pace. We first describe the standard model, which does 

not take into account the effects of time delay and memory. Let Y(t) be a function that describes the volume of 

production (the output), which was produced and sold at time t. We will use the assumption of unsaturation of 

the consumer market, i.e. we will assume that all made production is sold. In the simplest case, we also can 

assume that the sales volume is not so high as to significantly affect the price P. This allows us to consider a 

fixed price (P(t)=P). 

It is known that an increase of the production volume Y(t) is caused by the net investments I(t), which is 

investments aimed at expansion of production. The amount of net investment equal to the difference between the 

total investment and amortization (depreciation) costs. To increase output it is necessary that the net investment 

I(t) is greater than zero (I(t)>0). In the case I(t)=0, the investments only cover the cost of amortization and the 

output level remains unchanged. In the case I(t)<0, we have a reduction of fixed assets and, as a consequence, a 

decrease of output. 

The growth model with constant pace is assumed that the marginal output (dY(t) dt⁄ ) is directly proportional 

to the investment I(t). Mathematically, it is written by the equation 
dY(t)

dt
= L · I(t),          (1) 

where L is called the rate of acceleration [3]. Assuming that the amount of investment I(t) is a fixed part of 

income Q(t)=P·Y (t), we obtain 

I(t) = m · P · Y(t),           (2) 

where m is the norm of the net investment (0<m<1), which describes a part of income that is spent on the net 

investment. Substituting expression (2) into equation (1), we obtain 
dY(t)

dt
= λ · Y(t),          (3) 

where λ=m·P·L. Differential equation (3) has the solution 



Y(t) = Y(0) · exp(λ · t).           (4) 

Differential equation (3) describes the increase of output without restriction of growth [3, p. 81]. This 

equation is equation of growth with a constant pace. 

Equations (1) and (3) contain only the first-order derivative of Y(t) with respect to time. It is known that the 

derivatives of integer orders are determined by the properties of differentiable functions of time only in infinitely 

small neighborhood of the considered point of time. As a result, this economic model, which is described by 

equation (3), assumes an instant changes of marginal output, when the net investment changes. This means that 

the effects of dynamics memory and lag are neglected. The dynamic memory means a dependence of output at 

the present time on the investment changes in the past. In other words, equation (3) does not take into account 

the effects of memory. In economic models, we can consider the concept of dynamics memory by analogy with 

this concept in physics [6, p. 394-395]. The term "memory" means that the process state at a given time t=T 

depends on the process state in the past (t<T). In economic processes, a presence of memory means that there is 

endogenous or exogenous variable, which depends not only on its values at present time, but also on its values at 

previous time points [7, 8]. A memory effect is related with the fact that the same change of the exogenous 

variable can leads to the different change of the corresponding endogenous variable. This leads us to the 

multivalued dependencies of these variables [7, 8]. The multivalued dependencies are caused by the fact that the 

economic agents remember previous changes of these variables, and therefore can react differently. As a result, 

identical changes of the exogenous variable may lead to the different dynamics of endogenous variable. To 

describe power-law memory we can use the theory of derivatives and integrals of non-integer order [4, 5]. An 

economic interpretation of the fractional derivatives has been suggested in [14, 15]. To take into account the 

effects of power-law memory, the concept of marginal values of non-integer order [9, 10, 11] and the concept of 

the accelerator with memory [12, 13] have been proposed. The economic dymanic with power-law memory can 

be described by using the fractional differential equations [14, 15, 16, 17, 18, 19, 20] with derivatives of non-

integer orders. 

Case of dynamic memory with power-law fading 

In mathematics different types of fractional-order derivatives are known [4]. In order to take into account a 

power-law dynamic memory, we propose to use the left-sided Caputo fractional derivative of order α>0 with 

respect to time. One of the important property of the Caputo fractional derivatives is that the action of these 

derivatives on a constant function gives zero. Using only the left-sided fractiona-order derivative, we take into 

account the history of changes of endogenous or exogenous variable in the past, that is for t<T. The right-sided 

Caputo derivatives are defined by integration over t>T. The left-sided Caputo fractional derivative is defined by 

the equation 

(D0+
α Y)(t) ≔

1

Γ(n−α)
∫

Y(n)(τ)dτ

(t−τ)α−n+1

t

0
,          (5) 

where Y(n)(τ) is the derivative of integer order n=[α]+1 of the function Y(τ) with respect to τ such that 0<τ<t. 

Here function Y(τ) must have the derivatives of integer orders up to the (n-1)th order, which are absolutely 

continuous functions on the interval [0,t]. In order to have the correct dimensions of economic quantities we will 

use the dimensionless time variable t. 

Using the concept of the marginal values of non-integer orders, which is suggested in [9, 10, 11], and the 

concept of the accelerator with memory, which is proposed in [12], we get a generalization of equation (3) in the 

form 

(D0+
α Y)(t) = λ · Y(t).          (6) 

Fractional differential equation (6) takes into account one-parametric memory with power-law fading. Let us 

consider the Cauchy problem for fractional differential equation (6) of order α > 0 with the initial conditions  

Y(k)(0) = Yk,          (7) 

where n–1<α<n, λ is a real number, and k=1,…, n–1. 

For this Cauchy problem, we can give the conditions for a unique solution Y(t) in the space Cγ
α,n−1[0, T], 

where 0≤t≤T, 0≤γ<1 and γ≤α. This function space is defined by 

Cγ
α,n−1[0, T] = {Y(t) ∈ Cn[0, T]: (D0+

α Y)(t) ∈ Cγ[0, T]},          (8) 

where Cγ[0, T] is the weighted space of functions Y(t) given on [0,T ], such that tγ · Y(t) ∈ C[0, T]. The space 

Cn[0, T] is the space of functions Y(t), which are continuously differentiable on [0, T] up to order n. The space 

C[0,T] is the space of functions Y(t), which are continuous on [0,T]. 

Using Theorem 4.3 of [4, p. 231], the Cauchy problem involving homogeneous fractional differential 

equation (6) and initial conditions (7) has a unique solution Y(t) ∈ Cγ
α,n−1[0, T] in the form 

Y(t) = ∑ Yk ·n−1
k=0 tk · Eα,k+1[λ · tα],          (9) 

where Eα,β[z] is the two-parameter Mittag-Leffler function [4, p. 42], which is defined by the equation  

Eα,β[z]: = ∑
zk

Γ(αk+β)

∞
k=0 .          (10) 

The Mittag-Leffler function Eα,β[z] is a generalization of the exponential function ez, since E1,1[z] = ez. 

Solution (9) describes the economic growth model with constant pace and power-law fading memory. 



For 0<α<1, the solution of equation (6) has the form 

Y(t) = Y(0) · Eα,1[λ · tα].          (11) 

For α=1, equation (11) gives solution (4), which describes the economic growth model without memory. 

Case of power- law price and memory 

Let us consider the case, when the price P=P(t) is changed according to the power law  

P(t) = p · tβ,          (12) 

where β≥0 and p>0. In this case, we have the fractional differential equation 

(D0+
α Y)(t) = λ · tβ · Y(t),           (13) 

where the coefficient λ is defined by the equation λ=m·p·L. 

Using Theorem 4.4 of [4, p. 233], the Cauchy problem involving fractional differential equation (13) and 

initial conditions (7) has a unique solution Y(t) ∈ Cγ
α,n−1[0, T] in the form 

Y(t) = ∑
1

k!
Yk ·n−1

k=0 tk · Eα,1+β/α,(β+k)/α[λ · tα+β],          (14) 

where Eα,b,c[z] is the generalized Mittag-Leffler function [4, p. 48]. This function is defined by the equation 

Eα,b,c(z): = ∑ ak(α, b, c) · zk∞
k=0 ,          (15) 

where a0(α, b, c) = 1 and 

ak(α, b, c) = ∏
Γ(α(bk+c)+1)

Γ(α(bk+c+1)+1)

k−1
j=0 .          (16) 

for integer k≥1. 

For β=0, we have Eα,1,k/α[λ · tα] = k! · Eα,k+1[λ · tα]. Therefore equation (14) with β=0 gives (9). 

For 0<α<1, the solution of equation (14) has the form 

Y(t) = Y(0) · Eα,1+β/α,β/α[λ · tα+β],          (17) 

where we get (11) for the case β=0. 

Case of two-parameter power-law memory 

Let us consider model with two-parameter power-law memory. The differential equation of the growth model 

with this memory has the form 

(D0+
α Y)(t) − μ · (D0+

β
Y)(t) = λ · Y(t),          (18) 

where α>β>0, n–1<α≤n, m–1<β≤m, m≤n, 0≤t≤T, and μ, λ are real number. The solution of (18) is 

represented in terms of the generalized Wright function (the Fox-Wright function), Ψ1,1 [ |z(b,β)
(a,α)

], which is 

defined by the equation  

Ψ1,1 [ |z(b,β)
(a,α)

]:=∑
Γ(α·k+a)

Γ(β·k+b)
·

zk

k!
.∞

k=0           (19) 

Using Theorem 5.13 of [4, p.314], the solution of equation (18) has the form 

Y(t) = ∑ ajYj(tn−1
j=0 ),          (20) 

where Yj(t), j=0,…,n–1 are defined by the following equations 

Yj(t) = ∑
λ

k·tkα+j

Γ(k+1)

∞
k=0 Ψ1,1 [ |μ · tα−β (αk+j+1,α−β)

(n+1,1)
]– 

μ · ∑
λ

k·tkα+j+α−β

Γ(k+1)

∞
k=0 Ψ1,1 [ |μ · tα−β (αk+j+1+α−β,α−β)

(n+1,1)
]          (21) 

for j=0,…,m–1, and 

Yj(t) = ∑
λ

k·tkα+j

Γ(k+1)

∞
k=0 Ψ1,1 [ |μ · tα−β (αk+j+1,α−β)

(n+1,1)
]          (22) 

for j=m,…,n–1. 

For 0<β<α≤1, the solution of equation (18) is written in the form 

Y(t) = ∑
λ

k·tkα

Γ(k+1)

∞
k=0 Ψ1,1 [ |μ · tα−β (αk+1,α−β)

(n+1,1)
]– 

μ · ∑
λ

k·tkα+α−β

Γ(k+1)

∞
k=0 Ψ1,1 [ |μ · tα−β (αk+1+α−β,α−β)

(n+1,1)
].          (23) 

For 1<β<α≤2, the solution of equation (18) has the form 

Y(t) = a0Y0(t) + a1Y1(t),          (24) 

where Y0(t) is defined by (23), and Y1(t) is defined by the equation 

Y1(t) = ∑
λ

k·tkα+1

Γ(k+1)

∞
k=0 Ψ1,1 [ |μ · tα−β (αk+2,α−β)

(n+1,1)
]– 

μ · ∑
λ

k·tkα+1+α−β

Γ(k+1)

∞
k=0 Ψ1,1 [ |μ · tα−β (αk+2+α−β,α−β)

(n+1,1)
].          (25) 

For 0<β<1<α≤2, the solution of equation (18) is represented by equation (24) with Y0(t) in the form (23), and 

Y1(t) that is defined by the equation 

Y1(t) = ∑
λ

k·tkα+1

Γ(k+1)
∞
k=0 Ψ1,1 [ |μ · tα−β (αk+2,α−β)

(n+1,1)
].          (26) 



For the case of the multi-parametric power-law memory, we can use Theorem 5.14 of [4, p. 319-320]. Two-

parametric and multi-parametric memory allows us to take into account the power-law fading of memory for 

different types of economic agents. 

Dynamics of price growth and fixed assets with memory 

Some economic processes can be described by the analogous equations. For example, such processes are the 

price growth at a constant pace of inflation and dynamics of fixed assets. 

Let us consider the dynamics of price growth at a constant pace of inflation. We will assume that the price at 

time t is equal to P(t). The inflation pace is assumed to be equal to the constant R. Then, the price growth with 

power-law memory at constant pace of inflation can be described by the fractional differential equation 

(D0+
α P)(t) = R · P(t),          (27) 

where D0+
α  is the Caputo derivative (5). For α=1, equation (27) takes the form 

dP(t)

dt
= R · P(t).          (28) 

Fractional differential equation (27) has the solution 

P(t) = ∑ Pk ·n−1
k=0 tk · Eα,k+1[R · tα],          (29) 

where Eα,β[z] is the two-parameter Mittag-Leffler function (10). Solution (29) describes the dynamics of 

price growth with power-law fading memory. For α=1, expression (29) takes the form 

P(t) = P(0) · exp(R · t),           (30) 

which is the solution of equation (28), which describes the price growth at a constant pace [3, p. 81] without 

memory effects. 

As a second example we consider the dynamics of fixed assets, where we take into account the memory 

effects. Let A be a coefficient of disposal of fixed assets. We assume that the investment is constant, which is 

equal to B monetary units. We can describe the dynamics of fixed assets, if the rate of change of the fixed assets 

is equal to the difference between investments and disposal of fixed assets. Let us denote the fixed assets at time 

t≥0 by K(t). The dynamics of the fixed assets with power-law memory can be described by the fractional 

differential equation 

(D0+
α K)(t) = A − B · K(t),          (31) 

where D0+
α  is the Caputo derivative (5). For α=1, equation (31) takes the form 

dK(t)

dt
= A − B · K(t).          (32) 

Equation (32) describes the dynamics of fixed assets [3, p. 82] without memory.  

The solution of equation (31) has [4, p. 323] the form 

K(t) = A · ∫ (t − τ)α−1 · Eα,α[−B · (t − τ)α]dτ
t

0

+ 

∑ K(k)(0) ·n−1
k=0 tk · Eα,k+1[−B · tα],          (33) 

where n-1<α≤n, Eα,β[z] is the two-parameter Mittag-Leffler function (10). The calculation of the integral in 

equation (33) by using the change of variable ξ = t-τ, the definition (10) of the Mittag-Leffler function and term 

by term integration, gives solution (33) in the form 

K(t) =
A

B
· (1 − Eα,1[−B · tα]) + ∑ K(k)(0) · tk · Eα,k+1[−B · tα]n−1

k=0 ,          (34) 

where n-1<α≤n, and K(k)(0) are the values of the derivatives of the function K(t) at t=0. Solution (34) 

describes the dynamics of fixed assets with power-law fading memory.  

For 0<α≤1 (n=1) solution (34) has the form 

K(t) =
A

B
· (1 − Eα,1[−B · tα]) + K(0) · Eα,k+1[−B · tα],          (35) 

Using E1,1[z] = ez, solution (35) with α=1 takes the form 

K(t) =
A

B
(1 − exp(−B · t)) + K(0) · exp(−B · t),          (36) 

which describes the dynamics (32) of fixed assets without memory effects. 

Conclusion 

In general, in economic models we should take into account the memory effects that are based on the fact that 

economic agents remember the history of changes of exogenous and endogenous variables that characterize the 

economic process. The proposed economic growth model with constant pace and power-law memory has shown 

that the memory effects can play an important role in economic phenomena and processes. 
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