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Abstract: the article discusses a generalization of model of economic growth with constant pace, which takes
into account the effects of dynamic memory. Memory means that endogenous or exogenous variable at a given
time depends not only on their value at that time, but also on their values at previous times. To describe the
dynamic memory we use derivatives of non-integer orders. We obtain the solutions of fractional differential
equations with derivatives of non-integral order, which describe the dynamics of the output caused by the
changes of the net investments and effects of power-law fading memory.

Annomauun. ¢ cmamve obcydcoaemcs 060ouenue Mooeau IKOHOMULECKO20 POCMA ¢ NOCMOSAHHbIM MEMNOM,
yuumoslearowee Q(I)d)eKWlbl ounamuyeckol namamu. Ilamamo o3Havaem, 4mo OHOOEHHASA UNU DK302EeHHAs.
nepemeHHasl 6 OaHHbBIU MOMEHM BpEMEHU 3A6UCUM He MOJIbKO OMm 3HAYEeHUS 6 DMOm MOMEHN 6PpEMEHU, HO U Om
3HAYEHUl 6 npoutiom. ﬂ]lﬂ ONUCAHUSL OUHAMUYECKOU NAMAMU Mbl ucnojbzyem npous’eodeze Heyevlx nop;z();cos.
Honyuenvr peutenus OugepenyuanibHblX YpagHeHUll ¢ NPOU3BOOHbIMU HeYero020 NOpAOKd, ONUCLIBAIoUuiUe
OUHAMUKY USMEHEHUL 00beMa bINycKaeMol NpoOyKYuU, 00YCI08IEHHYIO USMEHEeHUeM YUCTNbIX UHEeCMUYULl u
aghpexmamu cmeneHHOU 3amyxaroujeti NAMamu.
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Introduction

In the continuous time approach, the economic growth models are described by using the tool of differential
equations with derivatives of integer orders [1, 2, 3]. In mathematics, derivatives of non-integer order are also
well known [4, 5]. This tool allows us to describe processes with power-law memory (for example, see [6]). In
this paper, we will consider a simplest economic model of growth with dynamic memory. We propose a
generalization of economic growth model with constant pace. We first describe the standard model, which does
not take into account the effects of time delay and memory. Let Y(t) be a function that describes the volume of
production (the output), which was produced and sold at time t. We will use the assumption of unsaturation of
the consumer market, i.e. we will assume that all made production is sold. In the simplest case, we also can
assume that the sales volume is not so high as to significantly affect the price P. This allows us to consider a
fixed price (P(t)=P).

It is known that an increase of the production volume Y(t) is caused by the net investments I(t), which is
investments aimed at expansion of production. The amount of net investment equal to the difference between the
total investment and amortization (depreciation) costs. To increase output it is necessary that the net investment
I(t) is greater than zero (I(t)>0). In the case I(t)=0, the investments only cover the cost of amortization and the
output level remains unchanged. In the case I(t)<0, we have a reduction of fixed assets and, as a consequence, a
decrease of output.

The growth model with constant pace is assumed that the marginal output (dY(t)/dt) is directly proportional
to the investment I(t). Mathematically, it is written by the equation

LW=raw, @
where L is called the rate of acceleration [3]. Assuming that the amount of investment I(t) is a fixed part of
income Q(t)=P-Y (t), we obtain
I =m-P-Y(), )
where m is the norm of the net investment (0<m<1), which describes a part of income that is spent on the net

investment. Substituting expression (2) into equation (1), we obtain

v _ .
0 = MY, (3)

where A=m-P-L. Differential equation (3) has the solution



Y(t) =Y(0) - exp( - t). 4

Differential equation (3) describes the increase of output without restriction of growth [3, p. 81]. This
equation is equation of growth with a constant pace.

Equations (1) and (3) contain only the first-order derivative of Y(t) with respect to time. It is known that the
derivatives of integer orders are determined by the properties of differentiable functions of time only in infinitely
small neighborhood of the considered point of time. As a result, this economic model, which is described by
equation (3), assumes an instant changes of marginal output, when the net investment changes. This means that
the effects of dynamics memory and lag are neglected. The dynamic memory means a dependence of output at
the present time on the investment changes in the past. In other words, equation (3) does not take into account
the effects of memory. In economic models, we can consider the concept of dynamics memory by analogy with
this concept in physics [6, p. 394-395]. The term "memory" means that the process state at a given time t=T
depends on the process state in the past (t<T). In economic processes, a presence of memory means that there is
endogenous or exogenous variable, which depends not only on its values at present time, but also on its values at
previous time points [7, 8]. A memory effect is related with the fact that the same change of the exogenous
variable can leads to the different change of the corresponding endogenous variable. This leads us to the
multivalued dependencies of these variables [7, 8]. The multivalued dependencies are caused by the fact that the
economic agents remember previous changes of these variables, and therefore can react differently. As a result,
identical changes of the exogenous variable may lead to the different dynamics of endogenous variable. To
describe power-law memory we can use the theory of derivatives and integrals of non-integer order [4, 5]. An
economic interpretation of the fractional derivatives has been suggested in [14, 15]. To take into account the
effects of power-law memory, the concept of marginal values of non-integer order [9, 10, 11] and the concept of
the accelerator with memory [12, 13] have been proposed. The economic dymanic with power-law memory can
be described by using the fractional differential equations [14, 15, 16, 17, 18, 19, 20] with derivatives of non-
integer orders.

Case of dynamic memory with power-law fading

In mathematics different types of fractional-order derivatives are known [4]. In order to take into account a
power-law dynamic memory, we propose to use the left-sided Caputo fractional derivative of order o>0 with
respect to time. One of the important property of the Caputo fractional derivatives is that the action of these
derivatives on a constant function gives zero. Using only the left-sided fractiona-order derivative, we take into
account the history of changes of endogenous or exogenous variable in the past, that is for t<T. The right-sided
Caputo derivatives are defined by integration over t>T. The left-sided Caputo fractional derivative is defined by
the equation

M) () dr
OENO = os hamasw 6

where Y™ (1) is the derivative of integer order n=[a]+1 of the function Y (t) with respect to t such that 0<t<t.
Here function Y(t) must have the derivatives of integer orders up to the (n-1)th order, which are absolutely
continuous functions on the interval [0,t]. In order to have the correct dimensions of economic quantities we will
use the dimensionless time variable t.

Using the concept of the marginal values of non-integer orders, which is suggested in [9, 10, 11], and the
concept of the accelerator with memory, which is proposed in [12], we get a generalization of equation (3) in the
form

(D5 Y(®) =4 -Y(D). (6)

Fractional differential equation (6) takes into account one-parametric memory with power-law fading. Let us

consider the Cauchy problem for fractional differential equation (6) of order a > 0 with the initial conditions
YOO =Y, @)

where n—1<a<n, A is a real number, and k=1,..., n—1.

For this Cauchy problem, we can give the conditions for a unique solution Y(t) in the space C"~*[0,T],
where 0<t<T, 0<y<1 and y<a. This function space is defined by

cen=1[o, T] = {Y(v) € c*[0, T]: (D§. Y)(t) € C,[0, T}, (8)

where C,[0, T] is the weighted space of functions Y (t) given on [0,T ], such that t - Y(t) € C[0, T]. The space
C™[0, T] is the space of functions Y(t), which are continuously differentiable on [0, T] up to order n. The space
C[0,T] is the space of functions Y (t), which are continuous on [0,T].

Using Theorem 4.3 of [4, p. 231], the Cauchy problem involving homogeneous fractional differential
equation (6) and initial conditions (7) has a unique solution Y(t) € C¥"~*[0, T] in the form

Y(O) = XR50 Vit Egpaa Ao, (9)
where E, g[z] is the two-parameter Mittag-Leffler function [4, p. 42], which is defined by the equation

k
o z
Eoplz]:= Zk=o tapy (10)

The Mittag-Leffler function E,g[z] is a generalization of the exponential function e”, since E;,[z] = e”.
Solution (9) describes the economic growth model with constant pace and power-law fading memory.



For 0<a<1, the solution of equation (6) has the form
Y(t) = Y(0) - Ey 4 [A-t"]. (11)
For a=1, equation (11) gives solution (4), which describes the economic growth model without memory.
Case of power- law price and memory
Let us consider the case, when the price P=P(t) is changed according to the power law

P(t) =p -t} (12)
where >0 and p>0. In this case, we have the fractional differential equation
DEN® =1-tP-Y(D), (13)

where the coefficient A is defined by the equation A=m-p-L.
Using Theorem 4.4 of [4, p. 233], the Cauchy problem involving fractional differential equation (13) and
initial conditions (7) has a unique solution Y(t) € cg'"—l[o, T] in the form

1
Y(O) = YR ék, K Eg14p/upio/alh - 4P, (14)
where E, , .[z] is the generalized Mittag- Leffler function [4, p. 48]. This function is defined by the equation
Eopc(2): = Zi=oak(a, b, ) - 2, (15)
where ay(a,b,c) = 1 and
—1 T(a(bk+c)+1)
=0 I(a(bk+c+1)+1)’

ax(a,b,c) = ]_[] (16)

for integer k>1.
For =0, we have Eg q /q[A - t*] = k! - E, k41 [A - t*]. Therefore equation (14) with f=0 gives (9).
For 0<o<1, the solution of equation (14) has the form
Y(t) = Y(O) : E(x,1+[3/u,[i/(x[7" : tﬂ"'ﬁ]‘ (17)
where we get (11) for the case p=0.
Case of two-parameter power-law memory
Let us consider model with two-parameter power-law memory. The differential equation of the growth model
with this memory has the form
5O —p- (D5, Y)(©® =2-Y(©®,  (18)
where o>p>0, n—1<a<n, m—-1<p<m, m<n, O<t<T, and p, A are real number. The solution of (18) is

represented in terms of the generalized Wright function (the Fox-Wright function), ¥, ; [((g:gﬂz], which is

defined by the equation
@), ]._ I(ok+a) zK
Yia [(b.B)lz]‘_Zk:" T(pk+b) ki (19)
Using Theorem 5.13 of [4, p.314], the solution of equation (18) has the form
Y(O) = X5 aY;(0), (20)
where Y;(t), j=0,...,n—1 are defined by the following equations
x ket (n+1,1) -
Y0 = Zico Toam Pt | @it |-
(n+1,1) -
e Zk=0W L1 [(ak+1+1+a paplt t ] (21)
for j=0,...,m-1, and

2K gkotj+a—p

AK. kot (n+1,1) -
Yi(t) = X0 oo P11 s ln -t B] (22)

for j=m,...,n—1.
For 0<B<a<1, the solution of equation (18) is written in the form

gk (n+1,1) -

YO = o tgrs Vi [weipt - 7 |-
AK.kat+a—p (n+1,1) -
1 Zimo oo P |ersaspaoplt 7 | @

For 1<f<a<2, the solution of equation (18) has the form
where Y, (t) is defined by (23), and Y, (t) is defined by the equation

Ak AN ot (n+1,1) _

Y1(t) = Xk=o T (ak+2, u_ﬁ)m . toB ]_
w AK.gkot+1+a—p (m+1,1) o
H'Zk:OW 11[(ak+2+a B,o— ﬁ)l pot ﬁ]- (25)
For 0<p<1<a<2, the solution of equation (18) is represented by equation (24) with Y, (t) in the form (23), and
Y, (t) that is defined by the equation

2 tku+1 (n+1,1) _
Y0 = T e [ S e ] (20)



For the case of the multi-parametric power-law memory, we can use Theorem 5.14 of [4, p. 319-320]. Two-
parametric and multi-parametric memory allows us to take into account the power-law fading of memory for
different types of economic agents.

Dynamics of price growth and fixed assets with memory

Some economic processes can be described by the analogous equations. For example, such processes are the
price growth at a constant pace of inflation and dynamics of fixed assets.

Let us consider the dynamics of price growth at a constant pace of inflation. We will assume that the price at
time t is equal to P(t). The inflation pace is assumed to be equal to the constant R. Then, the price growth with
power-law memory at constant pace of inflation can be described by the fractional differential equation

(D54 P)(® =R - P(D), @7)
where Dg, is the Caputo derivative (5). For a=1, equation (27) takes the form

dP(H _
CO=R-PE®. (28

Fractional differential equation (27) has the solution
P(t) = ¥Rg P - t° - Eqpesa [R- %], (29)

where E,g[z] is the two-parameter Mittag-Leffler function (10). Solution (29) describes the dynamics of

price growth with power-law fading memory. For 0=1, expression (29) takes the form
P(t) = P(0) - exp(R - 1), (30)

which is the solution of equation (28), which describes the price growth at a constant pace [3, p. 81] without
memory effects.

As a second example we consider the dynamics of fixed assets, where we take into account the memory
effects. Let A be a coefficient of disposal of fixed assets. We assume that the investment is constant, which is
equal to B monetary units. We can describe the dynamics of fixed assets, if the rate of change of the fixed assets
is equal to the difference between investments and disposal of fixed assets. Let us denote the fixed assets at time
t>0 by K(t). The dynamics of the fixed assets with power-law memory can be described by the fractional
differential equation

(Dg+K)(® = A —B-K(, (31)
where Dg.. is the Caputo derivative (5). For o=1, equation (31) takes the form
TR =A-B-K(). (32)

Equation (32) describes the dynamics of fixed assets [3, p. 82] without memory.
The solution of equation (31) has [4, p. 323] the form

Kit) =A- f (t—1)* - Eyo[-B- (t—1)*dr +

0
YRZ6KA(0) - t* - Egyq[-B -t (33)

where n-1<a<n, E,g[z] is the two-parameter Mittag-Leffler function (10). The calculation of the integral in
equation (33) by using the change of variable & = t-t, the definition (10) of the Mittag-Leffler function and term
by term integration, gives solution (33) in the form

K() =2+ (1 = Ega[-B - t4]) + ZRIKO(0) - - By [-B - 9], (34)

where n-1<a<n, and K®(0) are the values of the derivatives of the function K(t) at t=0. Solution (34)
describes the dynamics of fixed assets with power-law fading memory.

For 0<o<1 (n=1) solution (34) has the form

K®) =% (1 Eya[-B - t4]) + K(0) - Egjera [-B -], (35)
Using E4 ; [z] = €7, solution (35) with a=1 takes the form
K(9) = 2 (1 — exp(~B - 1)) + K(0) - exp(—B - 1), (36)
which describes the dynamics (32) of fixed assets without memory effects.

Conclusion

In general, in economic models we should take into account the memory effects that are based on the fact that
economic agents remember the history of changes of exogenous and endogenous variables that characterize the
economic process. The proposed economic growth model with constant pace and power-law memory has shown
that the memory effects can play an important role in economic phenomena and processes.
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