МЕТОДЫ АДАПТИВНОЙ ОПТИКИ ДЛЯ ИССЛЕДОВАНИЯ СВОЙСТВ АБЕРРАЦИИ ГЛАЗА Скрыбцова Н.И. Email: Skrybtsova17100@scientifictext.ru

Скрыбцова Надежда Игоревна – магистр,

кафедра физики и информационных систем, программа 03.04.02 Медицинская физика, Кубанский государственный университет, г. Краснодар

Аннотация: проведен эксперимент с применением модифицированного датчика волнового фронта Шака–Гартмана для исследования свойств аберраций глаза. В эксперименте измеряются внеосевые аберрации глаза. Этот эксперимент показал, что вне оси фиксации глаза значительно изменяется амплитуда лишь трех типов аберраций - дефокусировки, комы и астигматизма, тогда как значение других аберраций с углом практически не меняется. Внеосевое поведение аберраций варьируется от пациента к пациенту, что, по-видимому, обусловлено особенностями строения оптической системы глаза каждого из них.

Ключевые слова: адаптивная оптика, аберрации, волновой фронт, датчик Шака –Гартмана.

METHODS OF ADAPTIVE OPTICS FOR INVESTIGATION OF EYE ABRERATION PROPERTIES Skrybtsova N.I.

Skrybtsova Nadezhda Igorevna – Master, CHAIR OF PHYSICS AND INFORMATION SYSTEMS PROGRAM 03.04.02 MEDITSINSKAYA PHYSICS, KUBAN STATE UNIVERSITY, KRASNODAR

Abstract: experiments were performed using a modified Shack-Hartmann wavefront sensor to study the properties of eye aberrations. In the experiment, off-axis aberrations of the eye are measured. This experiment showed that outside the eye-fixing axis the amplitude of only three types of aberrations-defocusing, coma and astigmatism, changes significantly, while the value of other aberrations with an angle practically does not change. Off-axis behavior of aberrations varies from patient to patient, which, apparently, is due to the peculiarities of the structure of the eye's optical system of each of them.

Keywords: adaptive optics, aberrations, wave front, Shack - Hartmann sensor.

1. Введение

В настоящее время методы адаптивной оптики широко применяются в медицине, особенно адаптивная оптика позволяет расширить диагностические возможности в разных областях офтальмологии [1]. В офтальмологии зачастую бывает очень важно получить изображение глазного дна с хорошим разрешением. Однако, изображение получаемые с помощью обычных офтальмологических приборов могут оказаться недостаточно четкими из–за наличия у глаза различных аберраций. Адаптивная оптика позволяет компенсировать аберрации различных порядков и в разы повысить разрешение картины глазного дна.

2. Описание экспериментальной установки

Для проведения эксперимента нами была собрана установка в состав которой входил модифицированный датчик типа Шака-Гартмана. Этот датчик использует собирающую линзу для согласования апертуры входного излучения и размеров приемной ПЗС камеры

Рис. 1. Схема модифицированного датчика волнового фронта типа Шака-Гартмана: 1- собирающая линза, 2 микролинзовый растр, 3 - ПЗС-камера

Излучение полупроводникового лазера (ЛМ-780-2АВ, длина волны А. = 780 нм, мощность 2 мВт, диаметр пучка 0.6 мм) посредством оптической системы, состоящей из линз 6, 5, 4, 2 и подвижной призмы 3 доставляется на роговицу глаза и фокусируется глазом в точечный источник на сетчатке. Возможная близорукость и дальнозоркость глаза компенсируется подвижной призмой 3 (от -12 до +8 дптр), которая позволяет менять длину оптического пути между линзами 2 и 4. Диаметр пучка, падающего на роговицу, составляет 1.5-2 мм, мощность излучения, падающего на глаз, равняется 100 мкВт, что в несколько раз меньше максимально допустимой мощности излучения глаза на данной длине волны [1, 2]. Рассеявшись от сетчатки, излучение проходит через оптические элементы глаза в обратном направлении. При этом приобретается фазовая модуляция, соответствующая А оптической системы глаза. Сигнал, вышедший из глаза, проходит через линзы 2, 4, 5, 6 и попадает на телескопическую систему, состоящую из линз 12 и 13, которая осуществляет оптическое сопряжение плоскости зрачка глаза с плоскостью линзового растра 14. Линзовый растр представляет из себя массив микролинз 20 на 20, диаметр каждой 0.3 мм, фокусное расстояние 8 мм и формирует множество фокальных пятен в плоскости матрицы камеры 15 (Basler A602П). Оцифрованное изображение с камеры 15 передается через интерфейс ШЕЕ 1394 на компьютер 16, который производит расчет формы волнового фронта в виде разложения по полиномам Цернике. Для подавления влияния спекл-структур, образующихся при рассеянии когерентного света от шероховатой поверхности, которой является сетчатка, в плоскость, сопряжённую со зрачком глаза, помещался вращающийся клин 7 [3.] с углом раствора 0.5°. Клин вращался со скоростью, позволяющей опорному источнику на сетчатке за время передачи и обработки одного кадра (около 100 м сек), совершить несколько оборотов по окружности радиусом 50 мкм. Пример гартманограммы, полученной от реального глаза, с включенным и выключенным клином показан на рис. 2 (б - в).

Рис. 2. Схема экспериментальной установки аберрометра

3. Измерение внеосевых аберраций.

Для проведения эксперимента по измерению внесевых аберраций перед глазом пациента помещается полупрозрачная пластина, которая пропускает 92% а отражает 8% падающего света при длине волны 780 н.м. С помощью этой пластины пациент может фокусировать взгляд на различных участках мишени. В свою очередь мишень состоит из подсвечивающихся красным диодом меток расположенных на угловом

расстоянии 0.5° друг от друга. Ось фиксации глаза поворачивается в соответствии с положением диода, что привело к возникновению в различных участках глазного дна опорных источников, рассеянное излучение которых анализировалось датчиком Шака-Гартмана.

На результаты измерения может повлиять структура фоторецепторов сетчатки которая является неоднородной и может оказать влияние на соотношение отраженного и рассеянного падающего излучения.

Для того чтобы быть уверенными в том, что разность волновых фронтов вдоль разных направлений обусловлена именно аберрациями оптических элементов глаза, нами были рассмотрены точечные источники которые находились на угловом расстоянии не более 3° от центра, диаметр входного пучка равнялся 1.5-2 мм.

На рис. З представлены результаты измерений коэффициентов при полиномах Цернике для различных угловых координат опорного источника (от -3° до 3°) для правых глаз четырех обследованных пациентов ((а) - АБ, (б) - АД, (в) - РЛ, (г) - АК). Из четырех пациентов лишь у РЛ наблюдалась значительная ошибка рефракции на оси (-1.7D), рефракция остальных трех пациентов была близка к нормальной (АД - 0.5D, АБ + 0.3D, АК - 0.3D) На графике представлены значения коэффициентов при четырех полиномах: Z_2^0 (дефокусировка), Z_2^{-2} (астигматизм), Z_3^1 (Кома), Z_4^0 (сферическая аберрация). Для того, чтобы более наглядно показать изменение амплитуды полинома с углом, мы считали, что в 0° все коэффициенты имеют нулевое значение. Из графиков видно, что поведение коэффициентов Цернике было разным для всех четырех пациентов, однако, изменение сферической аберрации для каждого из них находится в пределах ошибки измерения. То же самое можно сказать и об остальных аберрациях высшего порядка. Основной вклад в изменение формы волнового фронта вносили аберрации второго порядка - астигматизм(Z_2^{-2}) и дефокусировка (Z_2^0).

Рис. 3. Поведение внеосевых аберраций для правых глаз пациентов

Изменение комы было несколько меньше, хотя этот тип искажений также привел к некоторому изменению формы волнового фронта. Астигматизм был основной аберрацией, определяющей изменения формы волнового фронта, для пациента РЛ (амплитуда изменения 0.5 мкм) и АБ (0.3 мкм). Для пациентов АК и АД дефокус имел наибольшую амплитуду изменения - 0.3 мкм. Изменение вертикальной и горизонтальной комы для всех пациентов не превышало 0.25 мкм. Амплитуда изменения дефокусировки для пациентов АД, РЛ, АБ, АК составила 0.3 мкм, 0.3 мкм, 0.2 мкм, 0.3 мкм соответственно.

Вывод

Таким образом, эксперимент по измерению внеосевых аберраций глаза показал, что вне оси фиксации глаза значительно изменяется амплитуда лишь трех типов аберраций - дефокусировки, комы и астигматизма, тогда как значение других аберраций с углом практически не меняется. Внеосевое поведение аберраций варьируется от пациента к пациенту, что, по-видимому, обусловлено особенностями строения оптической системы глаза каждого из них.

Список литературы / References

- 1. Беляков А.И. Методы адаптивной оптики в исследовании свойств оптической системы глаза, Программа 11-го Международного Симпозиума по Оптике Атмосферы и Океана. Томск, 2004. С. 78.
- 2. Дубинин А.В. Изопланатизм оптической системы человеческого глаза, Оптический журнал Томск 2008 С.43-45
- 3. Hofer H.J., Porter J. and Williams D.R. Presented at the 1998 Annual Meeting of the Association for Research in Vision and Ophthalmology, Fort Lauderdale. Fla. May 10-15 (1998).
- 4. American National Standard for Methods for Reporting Optical Aberrations of Eyes. Rep. ANSI Z80.28 (2004).
- 5. Санитарные нормы устройства и эксплуатации лазеров СанПиН 5804-91.