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Abstract: the application of system identification to vibrating structures consists of identifying the modal
parameters (eigenfrequencies, damping ratios and mode shapes) from vibration data. For the dynamic
characteristics, the control theory based on the transfer function representation is called the classical control
theory, in contrast with, the methodology of the linear system theory based on the analy- sis of the time series by
kalman filter and the representation of the state space is called modern control theory. In this paper, we consider
the methodology of identifying the mode parameters of the dynamic system of structures by using the Kalman
filter, which is a powerful means of modern control theory. The effectiveness of this structure identification

method is evaluated through simulated analysis of multi - degrees of freedom vibration sytem.
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1. State-space model
The equations of motion for an ny degrees-of-freedom (DOF) linear, time invariant, viscously damped system
subjected to external excitation are expressed as
Mi(t) + C;z(t) + Kz(t) = Ju(t) 1)
Where M, C;,K € R™@™ are the mass, damping and stiffness matrices, respectively; ] € R"¢*"d s the
excitation influence matrix that relates the n;-dimensional input vector u(t) to the ng-dimensional response
vector; z(t) is the ng-dimensional displacement response vector; dot denotes taking derivatives with respect to

time.



By defining the state vector x(t) = [z(t) z(t)]”, equation (1) can be converted into the continuous state
space form
x(t) = Ac x(8) + Beu(t) )
Where

O ®

In practice, only a limited number of measurements are available; therefore, the dimension of the
measurement output is less than or equal to the total number of degrees of freedom.

The ny-dimensional output vector y(t) can be expressed as

y(t) = Ca(8) z(t) + Cy 2(t) + Cq Z(¢) (4)

Where C,4 Cy,C, € R™*™ are the measurement location matrices corresponding to the displacement,
velocity and acceleration responses of the structural system.

We can rewrite the output vector into the continuous state space form,

y(t) = Cc x(t) + D, u(t) ()
Where
C.=[Ci—CMK Cy—CMC;], D, =C,M™1] (6)
In practical application, accelerations are often used commonly, so in this work, only accelerations are

considered. Therefore, the C. of equations (6) is as simple as follows.

Cc =Co[-MT'K —-MC;] @)
Equations 2 and 5 define the state space equation in continuous time:

x(t) = A; x(t) + B, u(t) (8a)

y(®) = Ccx(t) + Do u(t) (8b)

Equation (8a) is known as the State Equation and equation (8b) is known as the Observation Equation. But
measurements are taken in discrete time instants, so equations must be expressed in discrete time too.

Typical for the sampling of a continuous-time equation is a Zero-Order Hold assumption, which means that
the input is piecewise constant over the sampling period, that is

Vt € [ty tre1) = [KkAL (k+ 1DAL) = x(t) = x(ty) = x4,
u(®) =u(ty) = e, y(&) = y(te) = & 9)

Under this assumption, the continuous time state-space model (8a) and (8b) is converted to the discrete time
state-space model:

Xpe1 = A xp + By (10a)
Vi = C x; + D uy (10b)

Where X is the discrete time state vector containing the sampled displacements and velocities; uy and yy are
the sampled input and output; A is the discrete state matrix; B is the discrete input matrix; C is the discrete output
matrix; D is the discrete direct transmission matrix. They are related to their continuous-time counterparts as
(121

A=ehcht B=(A-DA;'B, (11)
C=C, D=D, (12)



In system identification, system response disturbance might be caused by different phenomena. The most
obvious one is noise generated by the sensors, or noise arising from round off errors during A/D conversion.

It is necessary to extend the state space model (10a) and (10b) including stochastic components, so stochastic
state space model is obtained.

Xp+1 = A xp + Bug +wy (13a)
Vi = Cxp +Duy + vy (13b)

Where w;, € R™ is the process noise due to disturbances and modeling inaccuracies; v, € R™ is the
measurement noise due to sensor inaccuracy.

We assume they are both independent and identically distributed, zero-mean normal vectors.

wi ~N(@0,Q) v ~N(0,Q) (14)

2. The Kalman filter

Due to the noise present in the stochastic state space Equations (13), it is only possible to predict the response
in term of probability. For state space systems, this prediction is accomplished by the construction of the
associated Kalman filter.

For the state space model specified in (13) with initial conditions xJ = u, and P = %, fork=1,2,...,N

Xt = AxE (15)
Pt =APS AT +Q (16)
With xF = xE™1 + K, 17
Pf = (I - K, OPE (18)
Wher K, = PK1CTzit (19)
ek = Y — Elyilyk-1] = yie — Cxg ™" (20)
% = Var(g) =Var|[C (x —xE*) + v ] =CPETCT +R (21)

K, is called the Kalman gain and ¢, are the innovations.

Under stationary conditions,

lim,,, PF1=P>0 (22)
P=APAT+Q—-APCT(CPCT+R)*(APCTT (23)
K=APCT(CPCT+R)™! (24)

3. System identification and modal analysis in a state-space model

The natural frequencies and modal damping ratios can be retrieved from the eigenvalues of A, and the mode
shapes can be evaluated using the corresponding eigenvectors and the output matrix C. The eigenvalues of A
come in complex conjugate pairs and each pair represents one physical vibration mode.

Assuming low and proportional damping, the second order modes are uncoupled and the jth eigenvalue of A

A = exp ((—Cj wj 1 w; ﬁ) At) (25)

Where w; are the natural frequencies, ¢; are damping ratios, and At is the time step.

has the form

Natural frequencies w; and the damping ratios ¢; are given by

o |tn(2)] £ = —Real[in(2;)]
7 At ' ijt

(26)
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The jth mode shape ¢; € R™ evaluated at sensor locations can be obtained using the following expression:
¢j =C 1/)1' (27)
Where 1); is the complex eigenvector of A corresponding to the eigenvalue A;
4. Verification through numerical simulation
In order to verify the validity of the proposed method in this paper, a three degree of freedom vibration

structure system as following (figure 1).

Fig. 1. 3 degrees of freedom vibration structure system

In figure 1, external excitation is applied through point ms and is expressed as u(t).
The physical parameters in the given structure vibration system are set as follows.
m;=10kg, m,=15kg, m3;=20kg
k;=10kg, k,=15kg, k3=20kg
¢,=3n/s, c,=5n/s, c3=10n/s

As the external excitation u(t), we used triangluar form signal as shown in figure 2.
u(t).N

TN AN N
0 3 ll]wu 25 3Wu . s
-200— — — — |

Fig. 2. External excitation diagram according to time

Random noise with a covariance corresponding to 10% of nominal values was added in viscous coefficiances
cl, c2, c3. At the same time,a random noise with a variance corresponding to 5% of the excitation maximum
value was added in excitation. We added random noise corresponding with the measurement noise level of low
cost acceleration sensors to measurement values.

From table 1, it can be seen that relative error between theorical values and identification results is less than
15% in damping ratio and less than 10% in the eigenfrequences and mode shape. That is, modal parameters were
well identificated even in the presence of process noise and measurement noise.

From now on, the validity of the method proposed in this paper was proved.

Comparison of theorical value and identification result Table 1



Table 1. Shows the results of the identification of the modal parameters obtained by using the Kalman filter algorithm

Normal frequence, Hz
theory identification relative error,%
1th 2.1014 1.9901 5.4785
2th 7.9821 8.5580 7.2147
3th 11.9635 11.2068 6.3254
Damping ratio,%
theory identification relative error,%
1th 6.5 5.89 9.5
2th 0.4 0.443 10.8
3th 0.4 0.459 14.8
Mode shape
theory identification relative error,%
(0.5878 (0.6063 (3.1457
1th 0.8875 0.8354 5.8741
1.000) 1.000) 0)
(1.000 © ©
2th 0.3070 0.2875 6.3651
-0.4982) -0.4796) 3.7415)
(-0.8693 (-0.9436 (8.5417
3th 1.000 0 0
-0.4102) -0.3818) 6.9214)

5. Conclusion

In this paper, we proposed the methodology to indentify modal parameters of a structure vibration system by
using kalman filter algorithm, which becomes one of the powerful methods of modern control theory.

By using the kalman filter algorithm, it is possible to identify modal parameter optimally even in the presence
of process noise and measurement noise exists.

The performance and validity of the proposed methodology was verificated through simulation application.
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