Classification of unmanned aerial vehicles Karshov R.

Классификация беспилотных летательных аппаратов Каршов Р. С.

Каршов Роман Сергеевич / Karshov Roman – студент-бакалавр, кафедра систем автоматического управления и контроля,

Национальный исследовательский университет Московский институт электронной техники, г. Зеленоград

Аннотация: в работе представлена классификация беспилотных летательных аппаратов. Рассмотрены такие параметры как способ управления, тип конструкции, масса и размер.

Abstract: this paper presents a classification of unmanned aerial vehicles. We consider parameters such as the control method, type of construction, weight and size.

Ключевые слова: Беспилотный летательный аппарат (БПЛА), классификация.

Keywords: Unmanned aerial vehicle (UAV), classification.

Область применения беспилотных летательных аппаратов достаточно широка. Благодаря тому, что квадрокоптер дистанционно управляемый летательный аппарат, он хорошо подходит для наблюдения и контроля зон, доступ к которым затруднен или непригоден для человека. Классификация беспилотных летательных аппаратов представлена на рисунке 1.

Рис. 1. Классификация беспилотных летательных аппаратов

Способ управления

Существуют следующие способы управления беспилотными летательными аппаратами:

- 1) Дистанционно-пилотируемый способ. Управление полетом осуществляется в двух режимах:
- ручное управление, осуществляется за счет управления оператора беспилотного летательного аппарата в режиме реального времени.
- автоматизированное управление осуществляется автономно, с возможностью его корректировки. Предварительно вводят координаты точек маршрута, определяя текущее положение летательного аппарата посредством навигации.
- 2) автоматический способ, управление совершается автопилотом по заранее заданной траектории на заданной высоте с заданной скоростью и со стабилизацией углов ориентации.

Наиболее распространённым на сегодняшнее время является дистанционно - пилотируемый способ, позволяющий в режиме реального времени проводить исследования необходимой местности и объектов. Оператор с земли управляет беспилотным летательным аппаратом или вносит изменения в заданном маршруте. Однако с точки зрения помехозащищенности от электромагнитного воздействия он является

наиболее уязвимым.

Тип конструкции

Существует два типа беспилотных летательных аппаратов, вращающегося и фиксированного крыла. Беспилотные летательные аппараты фиксированного крыла — это беспилотные самолеты, использующие прямой толчок по фиксированному крылу, чтобы получить подъемную силу [1]. Они нуждаются в относительно высокой пусковой скорости, чтобы получить эту подъемную силу, поэтому не подходят для работы в ограниченной или опасной окружающей среде.

Беспилотные летательные аппараты вращающегося крыла также разделены еще на 2 типа: одновинтовой и многовинтовой (мультикоптер). Одновинтовые схемы используются для построения вертолетов. Они обычно используют приводной несущий винт, обеспечивающий подъемную силу, которая уравновешивается хвостовым рулевым винтом. Многовинтовые вертолеты имеют больше 2-х несущих винтов для управления всеми формами движения.

Размер и масса

Беспилотные летательные аппараты охватывают широкий диапазон веса: от микро до беспилотных летательных аппаратов специального назначения, масса которых достигает 11 тонн. Классификация беспилотных летательных аппаратов представлена в таблице 1 [2].

Классификация	Категория	Взлетная масса (кг)	Высота полета (м)	Время полета (ч)
Микро и мини	Микро	0.1	250	1
	Мини	30	150-300	2
Тактические	Близкого расстояния	150	3000	2-4
	Среднего диапазона	150-500	3000-5000	6-10
	Дальнего диапазона	150-500	5000	9-13
	Высотный выносливый	2500-12500	15000-20000	24-48
Стратегические	Смертоносный	250	3000-4000	3-5
Специального	Приманка	250	50-5000	4
назначения	Стратосферный	_	20000-30000	48

Таблица 1. Классификация беспилотных летательных аппаратов

Применение беспилотных летательных аппаратов

1. Транспортировка

Доставка грузов разных габаритов без пилота в автономном варианте по запрограммированному маршруту, доставка медикаментов и биологических материалов, почты, товаров с интернет - магазина.

2. Аэрофотосъемка

Аэрофотосъемка местности, геодезия, картография, исследование городской инфраструктуры, создание художественного и документального кино.

3. Обеспечение безопасности

Охрана объектов и людей: мониторинг электростанций, земельных ресурсов, нефтепроводов/газопроводов, лесных ресурсов и дорог.

В чрезвычайные ситуации: предупреждение при возникновении ЧС, выполнение спасательных и поисковых работ, радиационный контроль местности.

4. Военная сфера

Разведывательные беспилотные летательные аппараты минимальных размеров, способные незаметно проникать на объекты противника. Одним из таких является PD-100 Black Hornet, который считается самым маленьким аппаратом. Его вес составляет всего 18 грамм. Укомплектован видеокамерой и тепловизором. Способен управляться удаленно или самостоятельно лететь к указанной цели.

Литература

- 1. George Vachtsevanos, Ben Ludington, Johan Reimann, Panos Antsaklis, Kimon Valavanis, «Modeling and Control of Unmanned Aerial Vehicles», may 2014.
- 2. UAVs- Redefining Geoint. [Электронный pecypc]: Geospatial world. URL: http://geospatialworld.net/magazine/MArticleView.aspx?aid=23671.(дата обращения: 17.05.2016).
- 3. Применение фильтра Калмана в системе стабилизации БПЛА вертолетного типа. Адрес публикации:

http://ipi1.ru/images/PDF/2016/51/primenenie-filtra-kalmana-v-sisteme.pdf.